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FOREWORD

This report presents the first phase of an ongoing program to establish the
permanent deflections attained by a circular cylindrical ring-stiffened shell,
when subjected to dynamic overpressure.

The study employs the ideas developed by Professor P. G. Hodge 30 years
ago. It will serve as a starting platform for more complicated analysis in the
near future.

This work was sponsored by the Office of Naval Technology through the Naval
Surface Warfare Center's Block Program, "Explosives and Undersea Warheads"
(D. E. Phillips).
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INTRODUCTION

is report is the first step towards an ongoing effort to obtain a closed

form or a relatively simple numerical solution to the problem of a ring-stiff-

ened, zircular cylindrical shell subjected to a dynamic pressure load. Maximum

permanent deflections after load removal are obtained.

The analytical solution of the dynamic problem, even under substantial

simplifying assumptions, can be very complex and cumbersome. In this report, we

rederive and extend the analytical solutions obtained by Hod...-e Consider-

able simplification can be achieved if we are content with numerical treatment

of the governing equations on the computer. (( *

This study employs the assumptions listed below.

1. (Geometrical and Boundary Conditions Assumptions) Rotational and axial

symmetries are assumed. For ring-stiffened shells only a typical half-frame

spacing(LT/ 2) is considered. (This assumption implies a relatively long shell,

away from supports which may affect behavior.)

2. (Loading Assumptions) The dynamic loading is axisymmetric in the form

of a step function applied as a pressure over a finite length of time and

then removed (i.e., of rectangular type). The duration of the load is very short.

Axial compression is not accounted for.

I
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3. (Initial Conditions Assumptions) The structure starts from rest with zero

initial velocity and displacements.

4. (Material Assumptions) Material is rigid perfectly plastic. The elastic

strain energy is much smaller than the energy dissipated through plastic defor-

mation. The simplest form of the Tresca yield surface is employed, and no

residual strains are considered. No strain rate effects are included.

5. (Geometrical Nonlinearity Assumptions) There is no geometrical nonlinearity.

Small deformations, strains, and rotations are considered. Transverse shear

deformation is neglected. The employed strain-displacement equations are linear,

and the equilibrium equations are based on the undeformed configuration.

The method is not new; it was first used by P. Hodge, Jr.1'2 30 years ago.

What is new is that we have been able to rework most of its details, point out

any differences with Hodge's results, and build the foundations on which more

complicated analyses, such as by Jones (Reference 3) and Duszek (Reference 4),

can be completed. Work similar to Hodge's original work1 ,2 was also presented

by Kuzin and Shapiro,5 and Sankaranarayanan 6 and Hodge. 7 Unlike the work

by Hodge8 and Sankaranarayanan, 9 in which the static collapse load was

established under rigid plastic conditions, the work by Klement10 was an

elastoplastic treatment of the static collapse load, while References 1 through

7 were concerned with the dynamic case. Onat, 1 Duszek,4' 2 and Lance

present analyses of load-displacement predictions for post-yield behavior under

static loads, accounting for changes in geometry. These analyses were based on

moderately large displacement theory and assumed rigid perfectly plastic

material. Furthermore, Reference 13 presented a bounding principle for finite

deflections and static loadings, and compared it with a solution by the "rate

2
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formulation," first proposed by Onat (Reference 11). Finally, in all fairness,

the work by Lintholm and Bessey14 must be mentioned, where clamped and axially

restrained beams were loaded impulsively, and it was concluded that the rigid

perfectly plastic model was inadequate due to the strong influence of elastic

effects.

This report is organized in the following way. After a brief introduction

there is a section of problem statement with its proposed solution technique.

The actual analysis pertaining to the obtained equations shows up in Appendices A

(preliminary analysis) through E. The analytical results of this analysis are

summarized in Tables 1 through 19 for the convenience of the reader. This is

followed by a section on results for five cylindrical shells and a brief discus-

sion of these computations. There is a Nomenclature section defining the terms

used and a relevant list of references.

3
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PROBLEM STATEMENT AND SOLUTION METHOD

Consider a ring-stiffened, circular cylindrical shell (Figure 1) with con-

stant frame spacing (L T). The shell has multiple frame spaces. However, only

a typical spacing will be analyzed. The body as well as the externally applied

dynamic loading are assumed fully axisymmetric (Figure 2). The loading is a

constant overpressure of magnitude P and form P - P(t) acting over a time inter-

val 0 < t < to (Figure 3). The time t0 is relatively short.

The material is assumed "rigid-perfectly plastic," [(Figure 4) References 15

through 21]. Therefore there are no deformations up to a critical stress. When

the critical stress, pressure, or load is reached, however, there will be unre-

stricted plastic flow. In actuality, strains and deformations will not increase

without bounds because buckling or fracture of the material will instead take

place. In the dynamic case accelerated motion will be resisted by the inertia of

the body. The rigid-perfectly plastic assumption is reasonable, where elastic

deformations are very small compared to plastic ones.

To solve the problem, it is required that we employ some of the ideas from

plasticity theory.7,15 ,2 4,2 5 Therefore, we briefly mention that, when a metal

goes beyond its yield point, the point representing the state of stress in stress

space lies on a surface. Typically, we have the Von Mises ellipse, the Tresca

hexagon, and the simplification of the Tresca hexagon, or the Tresca square.

Through a change of variables, the stress space can be written in terms of

moment and force resultants. When more plastic flow occurs, the direction

4
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in which this happens is given by the flow rule. The corresponding strain

rate vector (in strain space) is such that it is normal to the yield surface

and is directed outwards. The employed yield surface (References 7, 15,

and 19) is the simplified "approximate" Tresca square. The associated

flow rule and normality conditions (References 7, 15, and 19) are also

used. The equations of equilibrium (References 1, 2, 7, and 22) are obtained

in the undeformed configuration. The strain-displacement expressions

(Reference 22) used employ only linear terms. Therefore, the theory is

infinitesimal and the analysis is simplified considerably.

The boundary, initial, and jump conditions (Reference 23) are discussed in

the actual solution.

The method of solution is as follows:

1. Assume a "kinematically admissible" velocity profile. That is a velo-

city (or displacement) distribution that satisfies velocity (or displacement)

constraints; to ensure material stability the total external work by the loads

on these displacements is positive.*

2. Assume the portion of the yield surface on which we are on. We emp!,,y

an associated flow rule." The "outwards" normality condition of the strain rate

vector (written in terms of displacement rates) on the yield surface leads to

certain conditions being satisfied. These make the mechanism of instantaneous

motion admissible.

3. Satisfy initial, boundary, and "Jump" conditions (References 7, 23, 27,

and 28). These last conditions are at "hinge circles" for shells. (In the case

of beams we have just hinges.)

4. Satisfy the equations of equilibrium in the undeformed state.

*Drucker's postulate on material stability.15

5
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5. Verify that the obtained stress profiles (moment and force distributions)

do not violate the yield surface at any point. If they do, then another

"kinematically admissible" velocity profile must be assumed, and steps 1 through 4

repeated.

The maximum "residual" deflections are not bounds* of any kind. They can,

however, provide useful information on damage (deflections, not strains) by

dynamic overpressures and, therefore, serve as a guide for the estimation of

deformations.

*See upper and lower bound theorems 15 for static analysis. Because our problem

is dynamic, estimates of this kind do not produce bounds.

6
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RESULTS AND DISCUSSION

We summarize our analytical results in Tables 1 through 19. All

non-dimensional quantities that appear in all the Tables (1 through 25) are

defined in the Nomenclature as well as the Appendices. Tables 1 through 19 have

been organized with respect to two non-dimensional parameters. The first one is

a pressure parameter, controlling whether the loading is low or high. The second

one is a non-dimensional parameter c2 that combines shell radius (a), shell

thickness (h) and half frame spacing (L). The loading is termed "low" if
2 6 6

1 + L', p < 1 + - and "high" if p > 1 + -

The distinction of whether a shell is termed as either short or long depends

2 2 T 2 2
on whether the non-dimensional constant c =2T=2ah" ah is less or greater than 6.

Tables 1 and 2 pertain to short shells and low loading, tables 3 through 5 to

long shells and low loading. Tables 6 through 12 to short shells and high

loading, and Tables 13 through 19 to long shells and high loading.

This method was applied to five cases of ring-stiffened shells, not neces-

sarily representative of marine structures. Table 20 gives the geometrical and

material characteristics of these models. Model No. I was subjected to an over-

pressure of 600 psi. This model was analyzed by using the results of the case

of short shells and low loading. The applied overpressure exceeded the critical

overpressure (524.569 psi). Therefore, plastic flow took place. Table 21 gives

7



NSWC TR 86-328

results for this situation. The final permanent deformations are small in compar-

ison to the shell thickness. At a non-dimensional half length of 1.0 (i.e., at

middle between two stiffeners) residual displacement is only 0.645 x 10- 2 inches.

Table 21 also gives the time for the shell to come to rest.

Table 22 gives results for Model No. 2. In this case, the length between

stiffeners was increased from 3.543 to 10.630 in. The analysis falls in the

long shells, high loading case, since c2 (- 28.2546) exceeds 6. In this case,

the applied overpressure (600 psi) also was in excess of the critical value

(343.089 psi). The residual displacements are an order of magnitude larger than

for Model No. 1. In this case, the deflection profile is shown both as a func-

tion of non-dimensional time (vertically down) and as a function of distance from

the left support (middle point is represented by 1.000). Table 23 displays the

results of Model No. 3, identical to Model No. 2, but with lower applied over-

pressure, P - 525 psi. The residual displacements are smaller than for Model

No. 2.

Table 24 gives results for Model No. 4, which differs in geometry from

Models 1, 2 and 3. Table 24 shows that although the applied overpressure

(1200 psi) is not much larger than the critical overpressure (986.432 psi), this

method of analysis can lead to unrealistic displacement. This is due to the

omission of the geometrically nonlinear terms in the strain-displacement

relations (see Appendix A, Equations (A-12) through(A-15)] and because the

equilibrium equation [Equation (A-1) of Appendix A] was not obtained in the

deformed state.

Table 25 gives results for Model No. 5. In this case, the overpressure was

reduced to 987.0 psi and its period of duration increased from 0.10 x 10- 2 sec.

to 0.1 x 10- 1 sec. (with respect to Model No. 4). We observe that although

the exerted overpressure (987.0 psi) is slightly larger than the critical value

8
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(986.432 psi), the permanent deformations obtained are larger than- 1 diameter,

and there is no need to compute deformations to the middle of the shell. The

same table also gives the position and the velocity of the hinge circle as a

function of non-dimensional time. Furthermore, we observe that all models come

to rest, as is demonstrated by the velocity of the final point in time. (See

Tables 21 through 25.)

In conclusion, this study has shown that it is possible to obtain useful

expressions for permanent deformations. However, we must extend the method to,

at least, include the effect of end load [n term in Equation (A-30) which

will result in a three-dimensional Tresca cube for the approximate yield

surface], and account for geometric nonlinearities in the strain-displacement

relations to be able to obtain useful expressions of residual deformations.

Unlike finite element methods, this technique can provide very useful estimates

of residual deformations with minimal computational effort, provided a proper

analysis has been developed.

9
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LT  LT

FIGURE 1. RING-STIFFENED CIRCULAR CYLINDRICAL
SHELL (FRAME SPRING L T)

V

z

NOTE: THIS FIGURE DISPLAYS AN AXISYMMETRIC STRUCTURE
AND LOADING IN THE FORM OF INWARD PRESSURE P(t)

FIGURE 2. CROSS-SECTION OF FIGURE 1

10
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P

t

FIGURE 3. RECTANGULAR PRESSURE DISTRIBUTION
ACTING OVER TIME to

FIGURE 4. STRESS-STRAIN CURVE FOR RIGID, PERFECTLY PLASTIC MATERIAL

11
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TABLE 1. SUMMARY, SHORT SHELLS, LOW LOADING, 1

SHELL TYPE PRESSURE LOADING TYPE
TYPE TY ESHORT (O <C2 < 6) LO I+ -L< p< I+-2L

CONDITIONS 0 < < 1

MOMENT M (xT) = 2 (p-1)-x - c2(p-1)x2+[.2 (P-1)+3]x-1RESULTANT m x I

MEMBRANE
RESULTANT = -1

DISPLACEMENT W .ii=.. 3. CL2  ~ iX72

VELOCITY w(x,r) =3C2 (p-1)- ]x

3 rC-. 1

ACCELERATION w(x,r) 1) 2x

TIME N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

12
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TABLE 2. SUMMARY, SHORT SHELLS, LOW LOADING,'2
SHELL TYPE PRESSURE LOADING TYPE

TYPE 0 l2_+"6C
TY ESHORT < C2< 6 LOW (1+-L < P <  1 + -

CONDITIONS < -L
Po

MOMENT m-[c 3+ 2 [C2
+1 ]x+C2x2 +[ "--_ x-1

RESULTANT m2(J ' I22

MEMBRANE

RESULTANT n =

DISPLACEMENT w(x, T) [ +-P P Ix

VELOCITY v(x,r) 2 - 2+1 + p X

ACCELERATION W (x, r) = C2  x

TIME P C2
T 00 

Po (cl+ 2)

DISPLACEMENT (2 [XI+I) ]

AT REST wxo =  + -2 '2 +2 P-4 2

13
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TABLE 3. SUMMARY, LONG SHELLS, LOW LOADING, 1

TYPEYP RSUR ODIGTP

CONDITIONS 0 < 1

MOMENT I23C P2p1
RESULTANT mx -xr 2+[

MEMBRANE
RESULTANT n,,

DISPLACEMENT w (x. r) = 2 I(p 1)1I X72

VEiLOCITY iv x,-r) = 2i [C2 (p 1) -2 xr

ACCELERATION v(x, T) 2PI-
2C21

TIME N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

14
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TABLE 4. SUMMARY, LONG SHELLS, LOW LOADING, 2

SHELL TYPE PRESSURE LOADING TYPETYPE LONG C2 >6) LOW (+ 2L<p <-1+ 6--

CONDITIONS (u < 1u3 _ °3,.-(p -1) - 1

MOMENT mx -1
RESULTANT

MEMBRANE
RESULTANT n,,= 0

DISPLACEMENT w x2

VELOCITY w= 0

ACCELERATION 64=0

TIME To= 1

0n

DISPLACEMENT w (x r _)=3I 2 p )li O ~~~ 1

isi

AT RES 0 J 1p-11-1j X FOR 0 < x <az 17o - 1)

15
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TABLE 5. SUMMARY, LONG SHELLS, LOW LOADING, 3

SHELL TYPE PRESSURE LOADING TYPE

TYELONG (2 >6) LOW (+ 2 p < 1+1.6

CONDITIONS 3 (2 1) -1]

C

MOMENT m (xr) = + 1 1 34x 3 +6(1 + u)x2 - 12 ux - 2 (1 - 3u]

RESULTANT UJ

where u =x(T -1)

MEMBRANE n=- 1
RESULTANT

(x ,rx) C+ )(T 2 )+

DISPLACEMENT

[iogel 1 _l 1)J (1 -X) O(T-1)

VELOCITY W(x,T) = 6 (1 _ U)

J2 1i6 (i U) 21(

ACCELERATION w (xT) 6 [1+o(,+-1)-2x1 ]

TIME 7 0" o = 1+ 2C +p1 =1+

C (C[v, oVC6

W (x, r0)  2 "=3 L2 (p__) 1 X +  1 {(x +O )-C6 2" +--C a2]

DISPLACEMENT 2C2 2 +) 2 1C(2)

AT REST +_ Ice +o(1

16



NSWC TR 86-328

TABLE 6. SUMMARY, SHORT SHELLS, HIGH LOADING, 1

SHELL TYPE PRESSURE LOADING TYPE

SHORT 2 < 6) HIGH LOAD P > +

2 6CONDITIONS u0 = C2 (p1) 0 < 1 0 X <Uo

MOMENT m,, ,,.[ ,] +1 oR = r+
RESU LTANT [U 0 u R U] T-~u

MEMBRANE n= -1
RESULTANT

DISPLACEMENT w(x,r) = (p-1) 72u x
2 u

VELOCITY P= ( ) x
u
o

ACCELERATION j (P (- 1)xi

u
o

TIME 7o N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

17
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TABLE 7. SUMMARY, SHORT SHELLS, HIGH LOADING, 2

SHELL TYPE PRESSURE LOADING TYPE

TYPE H>SHORT (C 2 <6) HHLA (p 1C2 )

CONDITIONS u2 6 0 <  < 1

MOMENT
RESULTANT mx=1

MEMBRANE np
RESULTANT

DISPLACEMENT W =7

VELOCITY V - (p-1)T

ACCELERATION = p-1

TIME r N/A

DISPLACEMENT
AT REST

18
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TABLE 8. SUMMARY, SHORT SHELLS, HIGH LOADING, 3

SHELL TYPE PRESSURE LOADING TYPE
TYESHORT 2 <6 HIGH LOAD >I1 +-L p >r

6C O(xp p )

CONDITIONS = r 0 x < u T P

C2 (p-) 1 T < T' 1 +C- - P

MOMENT lIxr -122\/\322 \2(l 3 C2 U\( 1)

RESULTANT mx,7) - _2+C u 3+C u2 x 2 _ -2

MEMBRANE n= -1
RESULTANT

u2 = 6
0 C 2 ( p _ 1)

wlx,TJ -- 1 (p- 1 + x [S2v+ 4 [C -p -)312 - 1p-)3/ 2  +43p_

207 4A~ L2I V'

DISPLACEMENT +.iCp2 tan- r -tan-1 i FOR 0 <x < u

w(x~r) ~ 2{1- p C2x2 +P _fC Px[tan-  ) tan ( )- 1 ]
w2~) - ( 6 + C 2 x 2  (6 + c 2 x 2 2 8  V-

+xp 2  3C2 u 3 C2 x 3 "C2 u 3 xC2  1
6+C 2 u2 2  (6+C 2 x2 )2  4(6+C 2 u2) 4(6+C2x2)]FRu.

C ( -, 3/2
VELOCITY ~i(I-) =(p - = p- x

ACCELERATION xir = ~[+ (p -) ] =-!(-!) [2+7P]

TIME rAT TIME r' 2 - TRAVELING HINGE u MOVES TO MIDLENGTH x = I

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

19
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TABLE 9. SUMMARY, SHORT SHELLS, HIGH LOADING, 4

SHELL TYPE PRESSURE LOADING TYPE

TYPE SHORTC 2 <6 HIGH LOAD p> 1+-

C
2

u < x <
2 TT p P

CONDITIONS u6C2 (pr p > 7' 6 Pl

1 < r <<T'

MOMENT m -1
RESULTANT 

x

MEMBRANE -1
RESULTANT

DISPLACEMENT w () =[2p r - r2 p]

VELOCITY w(r) = p-

ACCELERATION w(r) = -1

TIME AT TIMEr' = 
p TRAVELING HINGE u MOVES TO MIDLENGTH x = u = 1 AND

0 P1
THIS REGIME SHRINKS TO ZERO

DISPLACEMENT H
AT REST HAS NOT COME TO REST YET

20
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TABLE 10. SUMMARY. SHORT SHELLS. HIGH LOADING, 5

SHELL TYPE PRESSURE LOADING TYPE
TYPE SHORT C2 < 6 HIGH LOAD Is> 1 + 6_

CONDITIONS p >7 T" < 7 < 7 " C2 p

MOMENT +1 3+C. 3C
t RESULTANT mx = - 2 2"

MEMBRANE
RESULTANT 'p -1

WIT) -_(2+2,2 +El(x)'

DISPLACEMENT WHERE FOR 0 < x < u E1 IS GIVEN IN TABLE 11

% < x I El IS GIVEN IN TABLE 12

VELOCITY ,_ (+ ,[)C2)-4 C21

ACCELERATION 3,.

TIME a "C2 p

DISPLACEMENT W I C2 p 2 x + ElIWHERE E1 WILL BE CALCULATED EITHER
AT REST 4 \c 2 +, 1 w ro BY TABLE I IOR TABLE 12

21
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lABLE 11. E1Ixl FOR O' x %u

E I X) _11(P-1) P2 (C2 41* 2 _ p2 r 3/2 +
2 04 @+) L@8 2~/

- p/p- +Ap~ Cp2to

4(C2 +6) 4,/6- 8 a_

22
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TABLE 12. El(W)FOR u. < x < 1

W1 3x = 2 (C2+ P) C2  p [12p C2x 2  +p C4x4 1
4px~an (C2\ + 6) 2  (6 2 + 3Cx

6+ 2) @C+C 0

+ 3C2  3C2 x
4(6 + C2  4(6 +C2

2 )

23
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TABLE 13. SUMMARY, LONG SHELLS, HIGH LOADING, 1

SHELL TYPE AS PRESSURE LOADING TYPE
TYPE6

TYELONG C 2 > 6 HIGH LOAD p > I + --
r2

CONDITIONS u 2  (P- ) a 2 6 uo

MOMENT 
uo

RESULTANT 32

=2 -6 +-1POINTS ALONG
0 u0  AB ON

TRESCA
SQUARE

MEMBRANE n =-1
RESULTANT

DISPLACEMENT wlx,T) = I (p-l) Tx
2 uo

VELOCITY (p-)TX
u 0

ACCELERATION i= (p-) x
Uo

TIME N/ATo

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

24
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TABLE 14. SUMMARY, LONG SHELLS, HIGH LOADING, 2

CONDI TIONS 20T

C2(p~l)u 0< x

MOMENT M.1
RESULTANT

POINT B
____ ___ ____ ___ ____ ___ ____ ___ ____ ___ ___ ON _ _ _ _ _ _ _ _ _

TRESCA
SQUARE

MEMBRANE 
nRESULTANT

DISPLACEMENT W 1(-),
2

VELOCITY if = (p3-1)

ACCELERATION it = p-i

TIME TON/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

25
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TABLE 15. SUMMARY, LONG SHELLS, HIGH LOADING, 3

TYPEYP BPRSUE ODNGTP

CONDITIONS t1. C:, 6p (p _ )3 2-- 2

0 1 defined in TABLE 16, ATTACHMENT 1

MOMENT
RESULTANT mn'= -1

MEMBRANE
RESULTANT '=0

DISPLACEMENT Wi(p)x
2 u0

VELOCITY %k=O0

ACCELERATION 'W=O0

TIME TON/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

26
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TABLE 16. SUMMARY, LONG SHELLS, HIGH LOADING, 4

SHELL TYPE AB PRESSURE LOADING TYPE
TYPE LONG C>6 HIGH LOAD p> 1 +C_. (p

_________ SEE LON C>6c2 2Py

ATTACHMENT 1. -coth C(u-u°)\+ 2V1y < x <u 1l<T<, (2\1-3) _3 4V- uo J

E) =(p-3)E [ 1ii T) c~ ~ 1 O ) +oht~ - '

CONDITIONS = [(-p-1)3 1 Uo \/3 /j

p T /(p-1)3 2- (1
'

1 2 0,< min 1 , if p>

2V3 3

MOMENT Ix (XT)= (Uy)3 [-4x3+6 (u+y)x2 -12 uyx- C < 01 < 1, if p <"
ROEUTNT m U )

RESULTANT - (y+ u)(y2 - 4yu+ u2)]

MEMBRANE
RESULTANT np

DISPLACEMENT SEE ATTACHMENT 2.

VELOCITY /=(p-T) (x -y)

ACCELERATION =(:+)( y -2[Y

TIME TO N/A

DISPLACEMENT HAS NOT COME TO REST YET

AT REST

27
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TABLE 16. ATTACHMENT 1

_ 2 /C (1- U + 2 "3 + u  2 )

2 \o, \73 u=uo + oge -- (u0

Y=U 0-0+ -- loge ~2~

28
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TABLE 16. ATTACHMENT 2

y < x U0

2 u0

C2 ~~~~ 1pi) I1V U0  C/
+ s! (P l jX-u,)(E0-u 0 ) + -L (E&-u 0

2) - -_- _0u 0) logo ( c+3.~

vi3 2 \/3)lg i3 (+ 3loge* ++ __

2C ci) (C~ £51 0* K c

(E)vf- Ioje£)+ (u3 )io3 l~(uo- 2I jj

U 0 < X U

W(X,T)= (P-l)+

2 (p-) [x-u Oj(e uo) + - (02_U. 2) 3 (- lg ( 0--if)
6 (2p- 3) (202C2v'i)

2 \f 3) l g ( E

(0 4{(e+ loge 1(0_ 2\/)1~ u 3/) 2og V(-3!L

/ Ig*I\oJ- loge\U c /

29
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TABLE 17. SUMMARY, LONG SHELLS, HIGH LOADING, 5

SHE LL TYPE AB PRESSURE LOADING TYPE

TYPELONG C2>6 HIGH p>l+

CONDITIONS u e x

MOMENT mx= 1
RESULTANT

MEMBRANE
RESULTANT "'p =-1

DISPLACEMENT SEE ATTACHMENT 1.

VELOCITY w=p-T

ACCELERATION w=-1

TIMET O  N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST
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TABLE 17. ATTACHMENT 1

u<x<l U=u*atT=T * , E=e *

wIx,T) = - (p-i) + P [T-r*I- - [T 2 T*1+
2 2

C2  (p-i)3  u o | (E*-uo) + 1 (E*2-u 2)

6 (2p- 3 ) 2

( 2f3

vi uo-

V 3 ( e 0  U .) l og e2C (U0+ 2 )-

V-3- {(E)+ 2f)loge I(E + 2\,3)V UO+ 2K ) 0~ Io+ /(

)- 3_3oge (E-3 j+(u~ ~ U,_ I (o- ')}

31
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TABLE 18. SUMMARY, LONG SHELLS, HIGH LOADING, 6

SHELL TYPE PRESSURE LOADING TYPE

TYPE63 TYELONG C2 > 6 HIGH p >1+ 6 p 3

C
2  2

Yt 0 Uo-01 +  2C 10g e  - C U0 o =

C I N th (A) +-uo + - o
1 C

F v'3 -
1 + - coth (A)

Tj = (2p-3) L2 6 0]

0< x<y y <
C

MOMENT =
RESULTANT m -1

MEMBRANE 0
RESULTANT n 0

DISPLACEMENT w(x,r) (p-)
2 u

VELOCITY w = 0

.4

ACCELERATION w 0

TIME T ) ( -)

To 1[ 1 -V 1 +-

DISPLACEMENT
AT w(x, r. )

REST
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TABLE 19. SUMMARY, LONG SHELLS, HIGH LOADING, 7
SHELL TYPE PRESSURE LOADING TYPE

TYPE63 TYELONG C2 > 6 HIGHp>1I+ 6 p 3

F 
C 2 

2

= 3 (01 + c-) (UO- C )
Y 0 u0 12C [oge 2VU 0

(--) wu + -

( Fl 22(U °
C C

1<1 -7; 0  2/3" coth (A) + Cuo] A

0u A= L

CONDITIONS C [1 + coth (A] T (p-_1) 3  2 2 0]

[1 ( +

-y jl
Y ( )- ) 1 -

I- 
2

1

MOMENT AND m = 1+ [-4x3+6( 0+y)x 2 -12yx-2(1 -3y)]
MEMBRANE xy)3

RESULTANT n-) -1

w(y,r) = Y\I/ +D 1  A1-+
My, T) (p - 1) y 71) + D[C A, (T - 71) -- B1 ,(rT2 +

2 u. 2'1

DISPLACEMENT 6 1  (C B r) (1-x) 1 1. I (SEE NEXT PAGE

1% + B (C - B 1 \ (C. 13T 1 F OR MORE
1 1) 1 11 INFORMATION.)

[-6 11 6(x)1

(1-y) -r 1  (x y) (P- 1)xY C2 (1-y)2J

VELOCITY [i 2 1 - 1

______ ___(I L c9 (i..vz C2 (1 _ v1

ACCELERATION W =-[1+ - (
C2  (1-_y)3 _1 y)2

TIME (P-Tl) ( - Y)TO 
oT = 1  + [ -,, + %cL6] _

DISPLACEMENT M (SEE NEXT PAGE FOR
AT REST w(y 0 , ro ) when y = Y = 1 the velocity becomes zero. MORE INFORMATION.)
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TABLE 19. (Cont.)

A,= (1- 1 ) (pT

B = 1i _ 6 1 1 Y1

C2 ( ,) p-)

c1  1- 1 + -6 1 (1-y')

(1-yjg (p-Tl)
[C21 y)6]
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NOMENCLATURE

2 a Ht
2

A 2 0
2
as

a W Mean Shell radius (in.)

c, C M Non-dimensional parameter defined as-

Rate of plastic work done (plastic dissipation) (-D unit area

(Lb-IN/IN3*SEC)

-Strain rate vector with components (i*, kx)

ex  M Total axial strain

e, M Total circumferential (hoop) strain

F(T) = Function with respect to non-dimensional time variable T

F(T) W Derivative of F(T) with respect to T

H = Half thickness of shell (in.)

h M Total thickness of shell (in.)

(ij) M Unit Vectors on (ne, m.) or (e , K.) space
(See Appendix.)
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NOMENCLATURE (Cont.)

Kx - Bending curvature in axial plane (1/in.) (x - Nondimensional
.1 H. xbending strain rate and 1 - K

K = Bending curvature is a plane perpendicular to the shell axis
(1/in.)

K Yield stress in pure shear defined in terms of ay yield stress
as oy (psi)

L = Half length of shell (from stiffener to midbay) (in.)

LT = Total length of shell (LT - 2L) (in.)

M W Mass of section analyzed (Lb-sec2/in.)

Mx = Bending Moment/length of section of shell perpendicular to
x-axis (longitudinal axis). (Lb-in./in.) It is defined as

H
fz Gxdz, where z is dummy variable across thickness

-H

MX  = Non-dimensional bending moment based on M.

Sa yH2 (Lb-in./in.)

(1) (2) - Unit normals at point A of yield surface (See Appendix)

(1) (2) . Unit normals at point B of yield surface (See Appendix)

H
Nx  W Membrane force/unit length defined as f axdz (lb./in.)

-H

No  = 2ayH (lb./In.)

52



NSWC TR 86-328

NOMENCLATURE (Cont.)

N4 Membrane force/unit length of axial section and a section
perpendicular to the axis of cylindrical shell (defined as

H
f aodz) (lb./in.)

-H

nt = Non-dimensional membrane force variable based on N

P f External pressure, function of time, i.e., P - P (t) (psi).
In this report it is taken as a constant

p f Non-dimensional pressure parameter ( a P

Po Non-dimensional collapse load parameter defined by Po 1 + L
C 2

P1 Non-dimensional collapse load parameter defined by pW 1 + L

C 2

s Surface density of material (mass/unit area) (ib.-sec.2/in.3)

t Time variable (sec.)

to Time period over which pressure loading P(t) is acting (sec.)

X Axial distance (in.)

x Non-dimensional variable (

U Longitudinal displacement (in.)

u = Non-dimensional axial displacement

V Velocity of propagation of traveling hinge (in./sec.)

W Radial displacement (in.)
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NOMENCLATURE (Cont.)

- Non-dimensional radial displacement variable defined by

sa W sa 1 W

4-Ht 2  2o Ht 2 aA
0 y o

( )z - Derivative with respect to non-dimensional axial variable x

C) - Time derivative with respect to non-dimensional time variable T

] - Square brackets indicate jump conditions of a variable (i.e.,
difference of its value at two points, one to the left and the
other to the right of the point in question)

a,8 M Arbitrary positive constants used in Appendices

ex - Axial strain in middle surface of skin (otherwise known as axial
inplane strain)

6 - Circumferential strain in middle surface of skin (otherwise
known as hoop strain)

- Non-dimensional stress resultant vector (nt, mx)

a y - Yield stress (psi)

- Non-dimensional time variable (T - t/to)

To - Non-dimensional time at which shell comes to rest

- Non-dimensional time
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APPENDIX A

PRELIMINARY ANALYSIS
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This Appendix presents the derivation of the developed solutions in a

detailed way. The circular cylindrical shell is ring-stiffened, fairly long,

and subjected to an external dynamic pressure load P, which, in itself, is

assumed axisymmetric and whose form over time is rectangular. Because the

material is assumed as rigid perfectly plastic, there will be no deformation

unless the external load P exceeds the critical collapse load P0 (References

A-1 and A-2).

For the purpose of solution we must have at our disposal:

1. The equations of equilibrium

2. Strain-displacement relations

3. A yield condition and associateA flow rule.

4. Conditions of continuity of certain variables, and initial and boundary

conditions.

A-2
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The analysis follows the five steps of the problem statement listed in the

main text for all four cases listed below. (It will become clear after each

solution in later appendices why such division takes place.)

1. Short shell and low intensity loading.

2. Long shell and low intensity loading.

3. Short shell and high intensity loading.

4. Long shell and high intensity loading.

EQUATIONS OF EQUILIBRIUM AND STRAIN - DISPLACEMENT EQUATIONS

If we consider a section of a shell element of axial length dX and cir-

cumferential length ado (where a stands for the shell radius) of mass M

(Figures A-1 and A-2) acted on by external pressure P, we can obtain Timoshenko's

equations of equilibrium A-3 in the undeformed configuration. The external loads

for this axisymmetric case are resisted by internal bending moment/unit length,

Mx, and membrane force/unit length, N . The equilibrium equation is:

32 2 N
M _W" a d~dX M + a d*dX- + a dX dP (A-l)

at 2  ax2 xa

A-3
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Replacing the mass per unit area s in Equation (A-1) by

H
S M (A-2)a dfdX

we have

a2 W.a2 1
aW ax2 x 1a (A-3)

In the paragraphs that follow, equations will be written in non-dimensional

form. The objective is to obtain certain relations between certain groups of

parameters, on one hand, while on the other (it is easier), to work with

non-dimensional groups.

We introduce the following notation:

- t/t0  (A-4)

x -- (A-5)L

M M
x M .. .=(A-6)x M 0 H 2

y
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N No

N 2a H (A-7)
o y

P a2H (A-8)

y

W s 2W (A-9)
2a Ht2
y o

2 L 2

c a 9- (A-10)

where L is the half length of the shell, H is the half thickness, a is the

yield stress, t is the duration (secs) of the rectangular pressure loading,

and X is the axial distance.

Using these equations, Equation (A-3) is transformed to

1 a2  a2

22  mx + n + p 2 w . 0 (A-i)
2c ax aT

This represents the equilibrium equation of an element in the undeformed confi-

guration. It is written in terms of two generalized stress resultants only,

mx and n . This is due to the axisymmetri.c nature of the problem and the

absence of axial loads. These resultants appear in the plastic dissipation rate

b, depending on the stress-state and the yield surface (References A-1 and A-4).

A-5
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DISSIPATION EQUATIONS

The purpose of the analysis that follows is to obtain the plastic

dissipation rate in terms of the strain rates associated with the generalized

stress resultants. The step is vital because it identifies the strain space

corresponding to the space of "stress resultants" of the yield surface

(References A-1 and A-4).

To further the analysis, we state the strain-displacement equations from

Reference A-3. The inplane axial (e x) and circumferential strains (E )

as well as curvatures K and K are:

C - au (A-12)

E, M - aW (A-13)

K 2 (A-14)

ax2

- 0 (A-15)

where U and W are the axial and radial displacements at the midsurface of the

shell, independent of the thickness, variable z. They depend on X only due to

axisymmetry (Reference A-3).

A-6
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The total strains e., e, are given by

e +U 32
e + --W (A-16)

e, E + Z K$ - -;_W (-7

$ a

e -~ +z~(A-17)

We introduce a non-dimensional thickness variable €, as

Z (A-18)

2a Ht 2

and A y 2 (A-19)2
as

Naturally, A is a positive quantity.

We can write Equations (A-16) and (A-17) as

. -u + cHK (A-20)x -" x

e, - Aw (A-21)
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and Equations (A-12), (A-13), (A-14), and (A-15) as

S-a- (A-22)x ax

CO M - Aw (A-23)

1 .LA a (A-24)
x c2 H ax 2

K= 0 (A-25)

To identify which parts of the strain rates play a part in the analysis, we

must compute the energy dissipated plistically (plastic dissipation rate D).

From first-principles (References A-1 and A-4), the internal rate of

plastic work b/unit area in terms of stresses and strain rates integrated over

shell thickness 2H is

-H
-H (o* + o )dz (A-26)

If we introduce the non-dimensional parameters n, m , and n by

means of

N iN n 2a H n (A-27)
x ox y x
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N M Nono M 2Oy H n 0 (A-28)

H2 H
M -Mm Wo oHm HNm (A-29)
x o x y x 2 o x

Equation (A-26) can be expressed as

D N+ N I M + io No - [ix n  + ki + io no] N (A-30)" x Nx x x xx x mx 0

where

1 . H 1 32W

x 2X m 2A

and this is the only time (numerical) I does not denote differentiation.

In the present case there is no axial load (nx  0) and Equation (A-30) becomes

D =[o no + £ Ix]No  (A-31)

x1

in terms of two generalized strain rates U, and stress resultants (n, m)

We observe that we can write the generalized strain rate in terms of a

two-component vector 6, in strain space, of the form

6 - U0, kI) (A-32)
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or in view of Equations (A-23) and (A-24)

" A - jxx) (A-33)
2c 2

where A is a constant given by Equation (A-19). Furthermore, the stress

resultants, which contribute to plastic dissipation, form a two-component

stress-resultant vector, a of the form

= (n, mx ) (A-34)

In the analysis, a yield surface and associated flow rule must be used. The

yield surface, which satisfies the Tresca yield criterion, has been developed by

Drucker, Hodge, and Onat. (See References A-4 and A-5 for more details.) For

the present case, the exact condition will be replaced by the simplified Tresca

rectangle ABCD (Figure A-3). This locus envelopes the exact curve from the

outside. According to plasticity theory, the strain rate vector must always

be normal to the yield surface and directed outwards during plastic flow, except

at the corners, where 6 must lie within the space described by the (two or

three) normals to the yield surface there. Furthermore, the yield surface must

be convex. (See References A-4 through A-10.)

The flow rule (outward normality to yield surface), therefore, determines

the direction of growth of plastic flow, which takes place along the gradient of

the yield surface. For perfectly plastic materials, however, the magnitude of

the strain rate cannot be determined.

A-10
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Furthermore, notice that on a straight side, while the strain rate vector

does not uniquely determine the state of stress [i.e., components (n and m x

the plastic dissipation is unique. [See Hodge (Reference A-5), Chapter 8, pp.

195-201.] Accordingly, the strain rate vector 6 must be of the form indicated

in Table A-1.

Here we explain how Table A-l is constructed.

1. Region AD

We consider the region AD (except the two end points A and D which must be

treated separately as they constitute "corners" on the yield surface). The

equation of the outward normal to AD is:

N c1  -1< c 1

(A-35)

Its slope is -w on the (n,, mx ) plane. The strain components of 6 are

given by Equation (A-33). Since m -1, this means that

A.
2cWxx < 0 (A-36)

and since A > 0 , this leads to i r > 0.

Noting that n* is arbitrary [to the extent that it lies between (-l, 1)] and

the slope of the 6 vector is

A-i
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1.•

-c-- (A-37)

this can only be satisfied by * 0.

2. Point A

At point A there are two outward normals.

(1)a. Normal to AD n (0, -)

or in U, J) notation

(1) ,- (A-38)

b. Normal to AB (-,0)

As already mentioned (and discussed in References A-i, A-4, and A-5), at a

corner of the yield surface the strain rate vector i must be a positive linear

combination (a, 8 > 0) of the unit exterior normals, i.e.,

(l) a (2) ( -a) (A-39)

A-12.
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By Equation (A-33), however, we note that

A A(-* - . - (-, -a) (A-40)2c2

i.e., -8, -a < 0 and, hence,

-< 0

(A-41)
1 .

2c
2  xx 

<

or

> >0

(A-42)

* >0
xx -

3. Point B

Similarly, at point B the outward normals are given by

a. Normal to AB at B: ( (-, 0) - iA-B ~-l ,)

b. Normal to BC at B: AB2) . (0, 1)

Since i must be a positive linear combination of (1) and ( 2 ) we have
-B ~B wehv

a a l  + 0 nB2  (-a, )(A-43)

A-13
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Comparing Equation (A-43) with (A-33) we deduce that

- < 0 or w > 0 (A-44)

2c 2 xx > 0 or Wxx <0 (A-45)

Table A-I can be completed by similar arguments.

CONTINUITY CONDITIONS

The shell in question is made of material without voids or other sources

3w
of discontinuity. Consequently, the radial displacement w and velocity L- are

continuous. If we denote "Jump" conditions through brackets, then

[w] " 0 (A-46)

LT (A-47)

In addition, the bending moment, mx, membrane force, n,, and shear force

distributions must be continuous across the length of the shell.

Finally, we need to quote some results from the travelling hinge theory of

Lee and Symonds.A -1f 'A - 1 2 Recall that a hinge forms at some point on the

structure, when the limit moment has been reached. In structural dynamics, this

hinge, hinge line, or hinge circle may either be stationary or travelling with a

velocity or propagation V. In the present case of our cylindrical shell, note

that

A-14
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a. If the hinge is stationary (V - 0), then the slope may be

discontinuous, i.e.,

r 0 or 0 (A-48)

b. If the hinge is travelling (V # 0), then the slope is continuous

- ax (A-49)

INITIAL AND LOADIW3 CONDITIONS

The shell is initially at rest. Up to time t - 0 (t - 0) there is no

applied load. Suddenly, at t - 0 (T - 0) a rectangular pressure pulse of

magnitude P (p) is applied on the cylindrical shell. The pressure pulse acts

over a time to (T - 1) and then becomes zero. Consequently, the initial

velocity and displacement conditions are

w(x, 0) - 0 (A-50)

w(x, 0) - 0 (A-51)

At some time t > to (T I > 1) the body is brought to rest, i.e.,

w*x, rI) = 0 (A-52)

A-15
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The loading conditions are

p(x, 0) - 0

p(x, T) - p for 0 < T < (A-53)

p(x, T) - 0 for T > 1

where p is a constant.

BOUNDARY CONDITIONS

With reference to Figure A-i, the first ring stiffener is located at x - 0

(X - 0), and the second one (end of bay) at x - 2 (X - 2L). At the first

stiffener (x - 0) the radial displacement and velocities are zero for all times

T > 0, i.e.,

w(O, T) - 0 (A-54)

v(O, T) - 0 (A-55)

From the discussion in "conditions of continuity," we conclude that whether the

slope of a hinge is continuous or not will depend on whether the initially

formed hinge is "travelling" or not, respectively. However, at the center of

the bay (x 1) the slope must be zero

w (1, r) - 0 (A-56)

A-16
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Due to symmetry, the shear at the center must be zero, i.e.,

m (1, T) - 0 (A-57)

Also observe that the non-dimensional bending moment mx and membrane force

n must lie on the yield locus when the structure is deforming.

From beam theory, recall that the bending moment distribution of a clamped

beam has a maximum negative value at the supports (x - 0 and x - 2), while it

attains a maximum positive value at the center (x - 1). Interpreting this in

terms of the square yield surface, the bending moment distribution could lie

anywhere along the DA, AB, BC (including corners) portions of the Tresca locus.

However, we also know that due to the compressive nature of the external

pressure, n, must be negative. This limits us along BA and the portion of

AB (including corners) where n is negative.

GENERAL METHOD

As already outlined in the "PROBLEM STATEMENT AND SOLUTION METHOD" section

of the body of the report, the approach consists of solving the equilibrium

equations involving two stress resultants, m and n,, subject to initial,
x

boundary, and jump conditions. The load consists of a non-dimensional pressure

load, exceeding the collapse load p0 (References A-13, A-14, and A-l) which

was calculated by a limit analysis and a rigid, perfectly plastic material. In

the process, we must assume (I) a kinematically admissible velocity profile, and

(2) the portion of the applicable yield locus.

A-17
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Based on these assumptions, we obtain 'a solution. We must verify its

validity, i.e., none of the stress resultants must violate the yield surface.

It is these conditions that impose certain constraints on our parameters, and

allow certain cases to emerge.

A-18
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Y

2H h

2a X

RING RING
STIFFENER STIFFENER

NOTE: GLOBAL FRAME OF REFERENCE (X, Y, Z) IS THROUGH
LEFT END, WHERE FIRST RING STIFFENER IS LOCATED.

FIGURE A-1. CIRCULAR CYLINDRICAL SHELL OF LENGTH
2L, DIAMETER 2a, SKIN THICKNESS h = 2H

A- 19
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ax

M dx

NOTE, MASS OF SHELL IS M.

FIGURE A-2. CYLINDRICAL SHELL SUBJECTED TO RADIALLY INWARD PRESSURE P
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=1

(-1 1) ,1 A 1 1

N 9 ,~m -- 1n

FIGURE A-3. SIMPLIFIED TRESCA YIELD SQUARE ABCD
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TABLE A-i. RBGIONS ON SIMPLIFIED TRESCA SQUARE (YIELD LOCUS)

Plastic Stress Resultants Strain-Rate Vector

Region Components Inequalities Components Equations Inequalities

n, mx  *i/-c2

AD* - - < n < 1 0 x 0 > 0

A - - * * _ >_ 0

AB -1 * -1l< <l i 0 ;7" > 0

B -1 +1 -V * > 0, " < 0

A-22
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APPENDIX B

CASE A - SHORT SHELLS, LOW LOADING

(1 L. < p +

(0 < c2< 6)
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2 6 c2
SHORT SHELLS, LOW LOADING, 1 + - < p < 1 + WITHc > 0

In this section, we show the relevant stress resultants mx and ,

displacement, velocity, and acceleration (w, w, w), as well as displacement

at rest w(x, T ), and time to come to rest T in Tables B-i and B-2.

Figure B-I displays the kinematic assumption with regard to the velocity field.

The analysis proceeds as follows.

The non-dimensional collapse load p was derived by Hodge in Reference B-1.

It is defined as

P 2 (B-1)
o i+2

c

We must solve (Equation A-11 of Appendix A)

1 m" + n + p - i 0 (B-2)
2c

2 x

subject to initial, boundary, and jump conditions for

p > p > 0 (B-3)

and p M 0.

B-2
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Equation (B-2) must be solved in two time intervals.

1. For 0 < T < l, when p i 0  and

2. For l < T < o when p 0,

where T 0 represents the time at which the shell comes to rest.

SOLUTION FOR TIME INTERVAL 0 < T < I , (p 0 0)

Referring to Figure A-3, assume we are on the AB side of the Tresca square.

Using Table A-1, this translates to the following requirements for the two resul-

tants and velocity

n, - (B-4)

-1 < m < 1 (B-5)

it" -0 (B-6)

w> 0 (B-7)

B-3
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Since w" - 0, the velocity profile can only be linear in x. Since we have two

initial conditions (zero displacement and velocity at time T - 0) we assume a

displacement profile of the form (linear in distance from ring stiffener)

w(x, T) - x [A° + A-t + A2
2 ] (B-8)

with v x[A 1 + 2A2t] (B-9)

ii 2A2x (B-10)

But

w(x,o) - 0 (B-11)

implies

A = 0 (B-12)
0

and w(xo) - 0 (B-13)

implies

A1 = 0 (B-14)

Therefore,

w(x, T) - XA2T2(B-15)

B-4
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where A2 is not a function of time or distance but a function of the load

level, i.e.,

A2 = A2 (p) (B-16)

Also, in view of w > 0

A2 > 0 (B-17)

We now replace n, -1 and w - xA2T2 in the equilibrium equation,

and solve for m

m" + 2c2 (p-) - 4c2xA 0 (B-18)
x 2

m 4c2A2x - 2(t-1) (B-19)

Integrating once

m M 2c2 - 2c2(p-l)x + B (B-20)

xn 2c2  (- z+ 1

But at x - 1, m'(l,T) = 0, i.e.,

B 1 = - 2c2A2 + 2c
2 (p-1) (B-21)

m I - 2c2A (x2_1) + 2c2 (p-l)(l-x) (B-22)
2

B-5
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Integrating again,

(B-2 3)

2 - A 2 (p1)x2 + 2c 2(p-1-A )x +D

At the end support (x 0), m

This defines

D, - (B-24)

Thus,

m t ~ 2A2 x3 - ~2 (p-1)x 2 + 2c 2(p-l-A )x -1(B-25)

At the middle (x - 1), - 1.

This determines that

A 2- pl 32(B-26)
4 2c2

B-6
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and, finally, the bending moment profile assumes the form

x  2-(p -1) - 1x3 - c2 (p -1)x2 + [2(p-1) + 3x - 1 (B-27)

and the displacement w becomes

- . c 2 
.1 2 (B-28)

2c 2

while the velocity * is

3 IC [2 (p-1) - 2]XT (B-29)

Now we must require that Imx I < 1 everywhere. We obtain the first and

second derivatives of m. They are

am [2 12 2
X ( - xj 2c (p-l)X + S-(p-1) + 3~ (B-30)

ax 6 2j~pi - x -2c (P-1) (B-31)

ax2 -

B-7
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We observe that one of the roots of Equation (B-30) is x 1  1 (midpoint). The

other root is

+ 2

[3 + -S(P-1)] 1[ 2 -
X 2 = I- = 1 1l + ] (B-32)

3 c P-1)- 1] 3 2(p-1)-

which is a positive quantity since

2

'PO 1 + As p approaches pO (from the right), x2 .
c22

This meaLs that if we choose this root (x2) to exceed or equal 1, in the

interval

0<x<l

Equation B-30) will always be non-negative, i.e.,

1 + 4

(B-33)

p<1+..6

B-8



NSWC TR 86-3 28

We need to examine later the sign of the second derivative, Equation (B-31), to

determine whether the yi,;tld condition will be violated. We started the analysis

based on the fact that for plastic deformations to take place

p >p l 2O i (B-34)

2
This means that y-(p-1) I > 0 (B-35)

This also means that p I > 0

At the left end (ring support), x -0

a21

ax2J x 2c2 (p-1) < 0 (B-36)

At the center (x - 1)

m.1nx - 6 E~Pl-1-2cCl)-c(p) - 6 (B-37)

X-1

Sinc L P-1 - 1> 0(B-38)

c 2(p-1) > 2 (B-39)

B-9
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Set c2(p-l) - 2 + c (B-40)

where .> 0

Then

m3

ax ] -4 + c (B-41)

x-1

At the two end points, the second derivative varies from -4 - 2c (which is

always negative), to -4 + c. The function m1 will have a maximum if its

first derivative vanishes and its second derivative is negative or zero.

We must have

3 2m 6[ ...(p-l) Ix 2(

ax 2

(PC-)-x-22p1<0

or x < 22(P-I) (B-43)
- 2 -1

for all 0 < x < 1.

At x 1 - 4 + < o (B-44)

or E < 4 (B-45)

B-10
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or c2 (p-i) - 2 + c < 6 (B-46)

6
or p < I + -2  (B-47)

c

At the lowest possible load p -p0 o 1 + Lthe moment resultant mx assumes the
c

form

mlower (x,T) -2x 2 + 4x- 1 (B-48)x

while at the upper possible load (without violating the yield surface)

-1 2 (B-49)

c

mupper (x,T) - 2x - 6x2 + 6x - 1 (B-50)x

Table B-1 summarizes the obtained results so far.

SOLUTION FOR TIME INTERVAL I < T < T, (p - 0)

At time T - 1 the pressure ceases acting (p - 0). There is an acting

acceleration, velocity, and displacement. They must match with the solution in

this range. Therefore, at T - 1

B-11
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* (xl) (p-1) L x

-[ + + 1 x (B-51)
C ~cI

Furthermore, the moment resultant with p - 0 becomes

m x(Xl) = - +[ +3 - ]x -(B-52)

Assuming the range AB on the yield surface,

= 0 (B-53)

> 0 (B-54)

to follow normality requirements. This means that the velocity profile must be

linear in x (," 0).

Assume

W(X,T) x[B 0 + BI-r+B 2r2] (B-55)

Then

-4 - x[B 1 + 2B2T] (B-56)

W - 2 B2 x (B-57)

B-12
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But from Equation (B-51)

B 2c (B-58)

and _3 _ + 1]x (B-59)
C

Therefore,

S3 1 - c2 + 1)T] (B-60)

Again, using normality (* > 0)

Bl [C 2 + 1(B-61)
C

Furthermore,

2
p - I+(B-62)

and, hence,

3
B > "(B-63)

B-13
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Taking the lowest value of BI for which normality is satisfied,

x[I 2 )" S-(B-64)

Therefore,

> 0 (B-65)

gives

3_ 3 - + 1., > 0 (B-66)

or

c2> c + p M p-o (B-67)

When time T becomes To, velocity is zero if the shell comes to rest.

Consequently, T - T - 2_
0 p 0

Also,

-[B + 2PT - + )T (B-68)
0 2.pB 2c2 2

I B-14
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Since displacements must match for time T - 1

2c - - [ + 2 - 2c + j (-

yielding

B 3
B -p (B-70)

and

2+ p - (B-71)2c2 2-

The displacement at time T T 0 can be calculated by substituting the

value of To . Hence,

w (x,To  -1 (1 + L) (1-2]

2 I22 211 4 2/ (B-72)

We must solve again

1 m" + n + p - 0 (B-73)
2c 2'

wlthp =0, , - an i4 3 [ 2

with p 0, n. -land [- + x (B-74)

2  - -S- + x + I (B-75)

2c 2x c2[2 1

B-15
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mx  - + x + 2c2 (B-76)

Integrating

m -3 c+1]2 + 2c2x + E (B-77)X L2  J 1

However, this must match the solution of time T 1, i.e.,

mx,) -3 3[c2 + 1]x+ 2c2x + El

3[~ +2 i + 2c~ [3 -(B-78)

Hence,

2
E - (B-79)

Integrating again

mx  -[ + 1]x3 + c2x2 + [3- x + E(B-80)

This must match the solution at time T 1 i, i.e., E - 1

B-16
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Therefore,

Im c x + [ A - 1 (B-81)

We observe again that

m (0,T) - -1 (B-82)

m (1,T) -l (B-83)

Again the yield condition must not be violated along any portion, which means

that -1 < m < 1. The moment resultant is an increasing function from x - 0 to

x - 1 and, for it to stay that way without exceeding the maximum absolute value

of 1, the first derivative must be non-negative in the x range (0,1). Further-

more, near x - 1, the second derivative must be non-positive for an increasing

function.

The first condition is

am 12x 3[IC2 31 x.3 - 2c (3- 2 0 B-4

ax S r 3 + 1) 3(1+ ST

Since

2
+ - > 0 (B-85)
2

B-17
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the quantity in curly brackets must be non-positive. For this to be so, the

value of x must lie within the range of the two roots of the quadratic. Since

by inspection one of them is xl = 1, the other must necessarily be

x2 W - (B-86)

Now x will always be in the non-negative range 0 < x < 1, which means that if we

make x2 negative or zero, x will always satisfy

am

ax > 0.

Therefore,

x2 2 (B-87)

gives c2 < 6 (B88)

The second condition is always satisfied for points x - 1 - (when 1 > 6 > 0,

and 6 is a small quantity)

x 6 + (1-6) + 2c2 < 0 (B-89)

ax 2X-1-6

B-18
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or when

1 2
3 + i c (B-90)

31+ ." c 2 ]

2

For small c2 (which is the current case), 6 must be less than 1 (as assumed).

Finally, Figure B-1 summarizes the velocity profiles for this case, and

Table B-2 summarizes the used quantities.

B-19
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w

o <, 1

t x

x 0 x- 1

I

x
xin0 xin

FIGURE B-1. VELOCITY PROFILES FOR SHORT SHELLS (C2 < 6), LOW LOADING (+ 2 < p 1+ )
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TABLE B-I. SUMMARY, SHORT SHELLS, LOW LOADING, 1

SHELL TYPE PRESSURE LOADING TYPE

TYESHORT (< C2 <6) LOW (--'P<

CONDITIONS 0 4 T 41

MOMENT __~r 1' PI-X C(-~2 2 PI+]
RESULTANT mxr --

MEMBRANE
RESULTANT =-

DISPLACEMENT w (X~r) = 1) - ]x 2

VELOCITY I x.TI p- )-2x

ACCELERATION v(xr) 3 2 [2(p _ 1) _2]x

TIME roN/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

B-21I
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TABLE B-2. SUMMARY, SHORT SHELLS, LOW LOADING, 2
SHELL TYPE PRESSURE LOADING TYPE

SHORT (o<C2< 6) LOW1+ 3 - p C2 2)

CONDITIONS 1 -p

Po

MOMENT [ -S +x3+C2x 2 +[c__-2lx-l
RESULTANT 2 2

MEMBRANE

RESULTANT n = 1

DISPLACEMENT w (x, r) ( + x

VELOCITY wx,r) =

ACCELERATION % (x, r) = (2

TIME P C2  p00-o (c 2 + 2)

DISPLACEMENT PX r1 11\ ~ (1 +_L)2]

AT REST w,(x,ro) 2i~~ 2 L[12 T + 2 1\4 C2 )

B-22
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APPENDIX C

CASE B - LONG SHELLS, LOW LOADING

1+ 2 < 1 6

(c> 6)

C-1
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LONG SHELLS, LOW LOADING, (i+ < P < I + _) WIT c > 0
c c'J

Figure C-I displays the assumed kinematics for the velocity distribution for

times 0 < T < 1 and I < T < T . Tables C-I through C-5 summarize the results we

are about to obtain. Observe that there are two intervals of interest, depending

on whether o < T < 1 and 1 < T < T0 . Furthermore, the last interval is subdi-

vided depending on whether the point of interest x is to the left (o < x < u) or

to the right (u < x < 1) of the travelling hinge.

When the pressure loading is restricted in the range

+ L < p< 1 + 6 (C-l)

c c

the moment resultant m1 of the previous analysis [Equation (B-27)] for o < T < 1

does not violate the yield surface requirements -1 < m < 1. In the second

2
range, however (1 < T < T) [Equation (B-81)], when c > 6, we obtain, setting

c - 6 + e and e > 0 and e being small

[4+~1 3  26+)x

mx(X,T) - 4 + Lx + (6+)x . x - 1 (C-2)

1 £
It is quite obvious that if x (i.e., near a point where x * + 0), the

yield condition is violated since

C-2
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____ [C 3+0+864e+3456] 1
3x ((+g), - - <4 ] 2- (C-3)54[8+¢]2

Table C-1 summarizes the result for 0 < T < 1. We just observed that when
2 > 6, the yield condition is violated near x - +0.

Consider the possibility of two regions on the yield surface:

1. Region AD for point x such that 0 < x < u

2. Region AB for point x such that u < x < 1

where u is the point along the shell's length where the regions change. It

actually represents the position where a hinge circle develops.

REGION AD

The hinge in question is travelling because it changes position with time.

Its initial location must be at the ring support at time T - 1. Along AD, the

strain rate vector must satisfy

1. v - 0 (no velocity) (C-4)

2. v"-0 (C-5)

3. % -1 (C-6)

C-3
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and equilibrium

I m + n + p i 0 (C-7)

(See Figure A-3.)

Since w -- 0 and at time T - 1 the pressure has ceased acting (p 0)

no 0 (C-8)

and

w M c1  (C-9)

The deformation is rigid plastic for 0 < x < u. This means that all points

0 < x < u have no motion for 1 < T < T0 , i.e., they do not deform

further than the deformation they acquired at time T - 1, which is

3 [21w(x,l)-- - (p-l)-l X (C-10)

2c L2 J1

REGION AB FOR u < x < 1

The conditions the strain rate must satisfy are

w 0 (C-11)

i> 0 (C-12)

no -( C-13)

C-4
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where

-1 a 3 < 1

while equilibrium gives:

1 M.+U (C-14)

2c2

Since the second derivative of the velocity with respect to position must vanish

it must be, at the most, linear in distance. Assume, therefore,

xz+B (C-15)

and

n x +B (C-16)

Replacing Equation (C-16) in the equilibrium Equation (C-14) and setting p - 0,

we have

1 " i MX 1 1+ )-0 (C-17)
2c2

Integrating once

m 2c +2c 2 (1-x 2+x) + c (C-18)

c-5
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Integrating again

c 2 2 + c2[ 3+ x2] + cx + c2  (C-19)

At the two ends x - u and x - 1 the moment resultant becomes -1 and 1,

respectively.

S.c 2 x2 +c 2 [_jAx ~3 + x2] + cx + c2  (C-20)

At x - u m - -1. Therefore,

c + (l+1)u2] + c1 + c2  (C-21)

Continuity of shearing force (M 0) at x u yields

o u)-c2E u 2 + 2(1 + )u] + c1  0 (C-22)

At the middle (x 1) we must have

m (1) ( 1 CC-23)

mx(l) - 0 (C-24)

i.e.

C2[I + 2(1 + I)J + cI 
= 0 (C-25)

2 [1
C + (l + ) + c + c2 - (C-26)

C-6
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or

C = -c2 + 2(1+ B) (C-27)

and

e2 " + ce2 [1.-+ (1 + )](C-28)

Substituting Equation (C-27) for c in Equation (C-22) we get

(u-i) 1"-2(1 + ) i2_) "-2(1 + §)( ) for u 0 1 (C-29)

Substituting c1 and c2 in Equations (C-21) and (C-22) we get

c2(u-l)(u 2 +u-2) + 2(1 + )(u2 -2 u + I) -- 2 (C-30)

However, from Equation (C-29)

11+ -.- (u + )XA (C-31)

and after algebra we obtain

12 1 (C-32)

c2 (1-u)
3

1+ -6_ (u+l_)
1u)2 (C-33)

c (l-u)-

c-7
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This, in turn, defines cIand c2from Equations (C-27) and (C-28). They are

-1 12 3 -u (C-34)
k(1-u)

C 2C1-3u) (C-35)
2(1-U) 3

The two solutions [Equation (C-15)] in the intervals 0 < x < u and u < x < 1

must have continuous velocities at x - u, i.e.,

* AT) U + BC ) - 0 (C-36)

Differentiating Equation (C-36) again with respect to time we obtain

u + + 0(C-37)

or

u+ 6 [c2 11A ~ -CXu + ) = ~ ~ 21(C-38)
c L C-u)J

or

_ 6 1 (C-39)
6 c 2 (1-u)2

Differentiating Equation (C-39) with respect to time we get

= + 6  -(uI~lu) 2)' ii 6 a___ 12 1 (-0.2 2 c61u)] 2 22 2 2 3 C-u c [it-u c it2 Cl-u) c Cl-u)

c-8
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We already obtained [Equation (C-32)] that

12 1 (C-41)

Equating the two, we obtain the following differential equation

U.2 [62 2L- 1 (C-42)

Since

u26 F 1u 2

we must necessarily have

u-0 (C-44)

or

Uin0 (C-45)

and

it 0 (C-46)

This means that the location of the hinge circle is linear in time, T

u - El T + E2(C-47)

6- El (C-48)

U - 0 (c-49)

C-9
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Velocities must match at time T- 1. [See Equations (C-36) and (B-29).]

Therefore,

1() 3 [a2 ( 1) 1)x _ Jx+ ~)(-0

c T=l

i.e., we get two initial conditions for A

0 ~()(C-52)

From Equation (C-36)

t - u (C-53)

and from Equation (C-43)

A 6  [c2 l (C-54)
c 2 [6 (-U) 2] 6

Therefore, by Equation (C-50)

16 [c2 - l u 2 T 2 -(C-55)

c-10
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with

U(T) - E1T+ E2(C-56)

A1(T) - E1  (C-57)

and uWi - 0 (C-58)

Equations (C-58) and (C-56) imply E 2  El. i.e.,

U(T) - E (T-1) (C-59)

6 - E(C-60)

Replacing Equations (C-59) and (C-60) at time T -1 in Equation (C-55) we

3 -(P-1) -1] L2-i (C-61)
c 2 I-Y ~c 261

or

-El (c' -6) (C-62)

U C ) (T-1) (C-63)

2-l
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Therefore, by Equation (C-53) the velocity field for u < x < 1 is

if - A(T)X + b(T) - (T)(X - U) (C-64)

However, using Equations (C-54), (C-62), and (C-63)

61 [c2 11]xu
*(T) - L~ - - -j~ - (C-65)

c 2 L (l-u)J2

where 6i and u are given by Equations (C-62) and (C-63), respectively.

Replacing the values of cl, c 2, A, and t in Equation (C-20) we obtain

m(x,Tr) - c 2[ 4 1 K3 6 (1+u) .21

L c 2 (1-u) 3  C (1-u)3

12 u x + 1I 2(1-3u)
(1-u) 3  (1-U) 3

1 + -13 [-4x
3 + 6(l+u)x 2 - 2ux -2(1-3u] (C-66)

Also

n, (C-67)

I < < T(C-68)

C-12



NSWC TR 86-328

Equation (C-66) yields

M x(1,T) - 1 (C-69)

3m~u,~).~l 2 (u-l)
3 -1c7

m x(u,T) " 1 + 2 "U1 3 1 (C-70)

K (1-U)3

and

> 0 (C-71)

" (C-72)

Equation (C-71) implies

6 1 2  1 (x-u) 0 (C-73)c " "6l-u) 2  
(-3

with u given by Equation (C-63) and, hence, 4 given by Equation (C-62)

c2-6
3 - (C-74)

Since 6 > 0 (c 2 > 6), Equation (C-73) can be rewritten as

6 (c2_6) ic 2(l-u) 2-6 (u)> 0 (C-75)

c 3 I (P-)- I 6(1-u) (

C-13
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This implies that

c (1-u) -6 >0 (C-76)

or

Since 1 > u > 0, Equation (B-77) reduces to

u >1 -~ .4CC-78)

At time T - C > 1) the motion stops

iw(X, 0 0 (C-79)

iT)X-(O - 0 (C-80)

or since in general x 0 T0

A(T0) - 0 (C-81)

or by Equation (C-54)

CI~ (TO) [2 [u ]] 0(C-82)

C-14
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Since in general, u(o) " (c 2 -6)
[ c 2, 

> 0

by Equation (C-82)

1 - (C-83)

62

yielding

UtoC 1-- (C-84)

Replacing T - TO in Equation (C-63) and equating it to Equation (C-84), we solve

for T from

I (c2)i

1 T 30[i 1 )  (C-85)
c

3 2- ( P- 1)- i
T 1 + (C-86)

0 c (c+v%)

or if we set

(c2-6)
C-23 --(p-I)-I] (C-87)

C-15
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T + -- (C-88)
0

and Equation (C-65) for the velocity field can be rewritten as

- lu2x-u) - -J - a(T-1)1

I + [(lX)-)cz (C-89)
[ ( l ~ a -a T ] [ U( + a ) -a -C ]

Also observe that

1 - a(T-l) / (C-90)
C

and

(T-l) ]= " c - (C-91)

and

2 1- + a - a (C-92)

Integrating Equation (C-89) and applying the boundary condition that (Equation

(B-28)]

w~,1 -- 3 c2  i

w(xl) --(p-l)- x (C-93)

C-16
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we have

w(x,T) - Ly r(P _) x + dT (C-94)

Observing that (see Tables C-2 and C-3)

d I_ -1ge + (x-i) 1 I 1 + (X-l) (C-95)

dr ea [ai+--Q] [1 a-+] T]2

Equation (C-94) becomes

2('T)-) x + L. (A) C-[-a(T-1)] -
2c 2' 2c 2afI

1 + 1) - (P-)- x +E.+):m [C + u)-Q)T] 1 2Tc' u-

- (l.r)1 (C-96)
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or using Equations (C-90), (C-91), and (C-92) the displacement at timeT0

[i.e., when w (X,T0 ) -0] becomes:

W X,T) 3 [c2(p-1- x +

1 (x+x) (1 _4 2f6 2f6 - ) + )2 - 2

-2L [.21og 6 log eIC] + Clc( 2 (-17

Observe that x - u only at tine T - 1. At that time, x u -0 and Equations

(C-96) and (C-10) give the same answer.

Equation (C-96) can also be written in terms of u as follows:

w(X,T) - h [~PL)-~ r -()1)(xc~ u( +
2c2 2aa 2

~l~el~t+ g1x~u] (C-98)

The acceleration i# is given by replacing Equations (C-32) and (C-33) in (C-16)

6 x 1 [lu -- 1 (c-99)
c 2 (1-u)3

C-l8



NSWC TR 86-328

If we further substitute u from Equation (C-63) we get

#(x,T)- - [l+- (r-)-2z] - 1 (c-0)

Figure C-i summarizes the velocity profiles employed for long shells (c2 > 6)

and low loading +22+6

Tables C-4 and C-5 are a summary of all the derived quantities for the same case.
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x= 
1

RING

UM1 = 0
ufr) = a Ti-1)

- I -

u0 u(r) Xl

RING

NOTE: OBSERVE THAT WHEN r ~'1 =x-

FIGURE C-1. VELOCITY PROFILES FOR LONG SHELLS (C2 > 6) AND LOW LOADING I + - <p <+)
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TABLE C1. SUMMARY, LONG SHELLS, LOW LOADING, I

TY PEYP R S U R O DI G T P

CONDITIONS 0 <'r

RESULTANT mx~r 3 2,2 r

MEMBRANE n=-
RESULTANT n -

DISPLACEMENT w (x.t7)(p 1~1Xr2

VELOCITY iv (x,r) 3 = C p )-2

ACCELERATION -x,) I [2(p -1)-2 x

TIMETO N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

C-2 1
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TABLE C-2. SUMMARY OF THE OBTAINED CONSTANTS

PARAMETER EXPRESSION

Cl ~12
(1 - U

C2  1_2(1 - 3u)

A4T ) 12 1

8(T) 6 (1+u)
c2 (1 _u) 3 -

i(7) 6 C2 - 1

C2 U 6 T1,U)2

Or 2(C 2 -6) -)

(C2 
-6)

c- 22
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I N

W 1a..

U) +

2 +

U U

CA

> 0-

Lu

I-

04

z a
Uw

2

U..

~CL 0 4
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TABLE CA SUMMARY, LONG SHELLS, LOW LOADING, 2

TYPEYP RSUR ODIGTP

C O N D IT IO N S)L 
W + L < p < + .%(C CC

RESULTANT =

DISPLACEMENT W 3 .LIC(pl)Ix

VELOCITY W =o

ACCELERATION W'i= 0

TIME 0c 1+_L(

DISPLACEMENT 3~r)_~f~pl~~ O x< 1
AT REST 0 (P1-i FO 1<2uJ'o
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TABLE C-5. SUMMARY, LONG SHELLS, LOW LOADING, 3

SHELL TYPE PRESSURE LOADING TYPE
TYPE LONG (C2 >6) LOW (1 + 2-L- < p < 1 + 6!"2

(c2_e)

CONDITIONS 2 , - 6) o u < <
CONDITIONS3[4,;(p- 1) - 1] u 61 '

C

MOMENTm x (X, 1.) - 1 + 1 ?[4x3+6(1 +u)x2_-12ux_-2(l_-3uq
MOMENT ( )L

RESULTANT

where u = a (r 1)

MEMBRANE n v =_ 1

RESULTANT

w(x,") 3 2C)- 1 x +6 +c)"-1) -1)I +

DISPLACEMENT

I ,.le1 -_c(" -1,, + o-X. ( -1)]}

VELOCITY w(x,r) = (31)I. (x-u)

ACCELERATION (x, ,) = (6) (+c(,r -l)-2x] -1
\c2) [ <_01]

TIME 1" 3 1+ S2 C(C 1 +

ToC(C +v q6)

w,,, To 3 J.L2( ,-,lx +_L< I,(x +a), (1 --- c -+a)2 2]1

DISPLACEMENT 2 ,2 +2,\ , 2 C f J

AT REST f 1. og ci+0 X (

C-25/C-26
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APPENDIX D

CASE C - SHORT SHELLS, HIGH LOADING

(0 < c2< 6)

D-1
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SHORT SHELLS, HIGH LOADING, > 1+t2) 0 < 2 6

Figure D-1 gives the assumed velocity profile, which will be justified in

this section.

Tables D-l, D-2, D-4, D-5, D-6, D-7, and D-8 summarize the solution in all

intervals. Tables D-4 and D-5 summarize the solution in the interval 1 < T < T',

while Tables D-6, D-7, and D-8 for T' < T < To.

First, we observe that in view of Equation (B-42) or (B-47), the solution

for short shells (portion AB on the yield surface) in the range 0 < T < 1 cannot

be used, as it predicts a moment resultant mx outside the (-1,1) range of the

Tresca square.

From the point of view of time intervals, it turns out that we must consider

three intervals:

1. STAGE 1 (0 < T < 1) for times during which the excess pressure p is

acting.

2. STAGE 2 (1 < T < T') for times during which the pressure load has been

removed (p = 0), but motion continues (w(T') 0 0), T' will be defined there.
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3. STAGE 3 (T' < T < T ) for times during which the pressure p has been

removed (p - 0) and the shell comes to rest (M(To ) 0 0).

STAGE 1

We consider two regions as a possible assumed profile on the yield surface:

(1) for points such that 0 < x < u0 on AB (Figure A-3) and (2) for points such

that u0 < x < 1 at corner A (Figure A-3). Other combinations were considered

and eliminated by Hodge.D-l'D-2 They violate the -1 < m < 1 requirement.

1. First interval 0 < x < u0 (AB). The requirements on the strain rate

vector are such that

i" 0 (D-1)

* > 0 (D-2)

n, M -1 (D-3)

Equations (D-1) and (D-2) together yield that w is linear in distance x, such

that

-x (D-4)

with A(T) > 0 (D-5)

Therefore,

V- A()x (D-6)
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Equilibrium requires

- m" + n + p - i 0 (D-7)
2c 2  x

or using Equations (D-3) and (D-6)

m" + 2c2 (-+p) - 2c2 Ax f0 (D-8)I

Integrating twice Equation (D-8)

ml 2c 2  1A x 2 - (p-l)x] + C1  (D-9)

1 2. 3 22

m = 1 c 2 A - c (p-l)x 2 + CIX + D1  (D-10)
x ~1 1

At x - 0, mx(o) - -1, yields

D1  -1 (D-11)

Hence,

A c2 A x3  c2(p-l)x2 + C x - 1 (D-12)
x 5 1

To proceed further we need to consider the second region u0 < x < 1 and

then examine both solutions at x - u.
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2. Second interval u 0 <z x < 1 (point B on yield surface). The strain rate

requirements are

W> 0 (D-13)

w*< 0 (D-14)

and

no -l (D-15)

m x - 1(D-16)

together with

-.in* + n + p 0 (C-17)
2c 2  x

Substituting Equations (D-15) and (D-16) in Equation (D-17)

*n 0+ pp-1 (D-18)

and integrating once

if - (p-l)T + D(D-19)
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Since, however, *(x,o) -0, D, 0.

Therefore,

w - (-l~t(D-20)

Integrating again

w _ I(Pl)T2 + E(D-21)

where E1will be determined by matching displacements of x u 0 from the first

interval (0 < x < u0)

Since in the second interval Cu 0< x < 1) m1  1, it must match m xof the

first interval (0 < x < u 0), i.e, by Equation (D-12)

1 2 .. 3 2 2
3cA u 0- c (P-l)u 0+C 1u 0- I-1 (D-22)

Furthermore, the shearing forces must match, i.e,

m2Cu0 T) c [2 Ax 2 _ 2c2 (p-l)x + C] -

c 2 Ku 2 -2c 
2(p-l)u + C, -0 (D-23)
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Since the hinge may be stationary, there may be a discontinuity in slope.

However, displacements, velocities, and accelerations must be equal at x = 0o ,

i.e., from Equations (D-6) and (D-18)

K(T)u ° - p-i (D-24)

Therefore,

() p- (D-25)
U
0

and by Equations (D-25) and (D-6)

ii(T) - (p-l) X (D-26)
U
0

represents the acceleration in the first interval (0 < x < u0). By

Equations (D-4) and (D-19)

A u (p-l)T (D-27)

i.e.,

A(T) (p-l) T (D-28)
u
0
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This means that u is a constant and in 0 < x < u

*(x,T) - & - (p-i) T X (D-29)U
0

and

w(x,T) 1 T X (D-30)2 u

because w(x,o) = 0.

At this point we consider that at x u0 the displacements must agree. By

Equations (D-30) and (D-21), E1 w 0. Hence, in the second interval (u < x < 1)

w - (P-1)T2  (D-31)

Furthermore, replacing Equation (D-25) in Equation (D-12) we get

m 2 - 3 + 3 x 2_ (D-32)

for (0 < x < u )

Substitute A from Equation (D-25) in Equation (D-23) to obtain

C c 2 (p-l) u°  (D-33)
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Substitute the values of C1 from Equation (D-33) and A from Equation (D-25) in

Equation (D-22) to determine u

2 6 (D-34)
S 2 (Pi)1)

In Equation (D-32) the moment resultant can be written in an alternate form

3
mx (xT) - 2(1_ - 1) + 1 (D-35)

Therefore, Tables D-1 and D-2 display the solutions for times 0 < T < 1 in

the two intervals, o < x < u0 and u ° < x < 1. Figure D-1 gives information on

the velocity profiles for times o < T < 1 as well as 1 < T < T', which will be

analyzed next.

Note once more that since

am x .6 x 1)2 > 0 (D-36)

x uo0(

a2m

x . 12 - < 0 (D-37)

ax 2 u 2 o/u0

The function mx is uniformly increasing in the interval 0 < x < uo. This

is to be considered later (long shells, high loading).
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STAGE 2

Pressure load p is removed, p - 0, where T' is a time that will be defined

later. We must solve the equilibrium equation

_Lin +p+n - 0 (D-38)
2c

2 x

with p - 0, with initial conditions as to velocity and displacement given by

Stage 1. We must also satisfy the conditions imposed by the normality require-

ments of the strain rate vector to the yield surface. We assume that the same

two ranges on the yield surface apply, i.e.,

1. First interval. For 0 < x < u, we are along AB.

n, -1 (D-39)

-1< m < 1 (D-40)

> 0 (D-41)

0" 0 (D-42)

and

w(l) m-1 x (D-43)
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U, 2 2  (D-44)

*(1) -(D-45)

0

w(x,l) 1 (p-i) x (D-46)
2u

m (x,l) - 2( L. - 13+ 1 (D-47)

2. Second interval. For u < x < 1 (at corner B of yield surface; see

Figure A-3).

n, -1(D-48)

m - -1(D-49)

w> 0 (D-50)

<" 0 (D-51)

and

*(1) -p -1(D-52)

u (p-i) (D-53)
0 U

0
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R -l p I (D-54)

W(X,1) - !(- (D-55)

1. First Interval 0 <z x < u

(1 < T < T')

Take

*(T) - (PrT)jj_ (D-56)

Then by differentiating with time T

*j L [PT - - [ + (p -Oi] (D-57)

Solving

2c2Mx1 
(D-58)

2c 2  x

mx 2c 2l2 l(!+(P )f)x] (D-59)
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- 2c2[ - ( + (p-) )X2] +C (D-60)

At x u, m 0, i.e.,

C1  -2c 2  -2 2!(P-T)] (D-61)

as'- 2c 2[z-) +~ )(P-.T)11 -(+ (P-T) x2] (D-62)

m 2c 2 [(12_ u + .l(P-T)4X 1 1~( + (P-T)4\x + D(D-63)

But

mx(o) -1 gives D1  -1

Hence,

m= c2x 2 -c2ux + c2(p-)4x C 2 + x3 - 1 (D-64)

Also at x - u, m- 1 yields the following ordinary differential equation

2 C2(p)ud 2 +.1 c u (D-65)3 3
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or

2 (p- )udu _2 2 (D-66)
d- 2 3

d = 2udu (D-7)
P-T ( 2 +

Hence integrating we get

-loge 
tP-TI loge u + C (D-68)

But at T i

U2 U2 6 (D-69)
0 o 2 P 1

Therefore,

C1 w. logjC (D-70)

and, finally,

u22 6T (D-71)

c (P-T)
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Using the differential Equation (D-65) in Equation (D-57), the acceleration can

*be rewritten as

- ~~ + (P-r)] - + (D-72)

However, using Equation (D-71) we get

Sf _ _ - ( [2 +2 (D-73)

I (A [ + 2.(D-74)

which makes acceleration linear with distance for points 0 < x < u. We also

note that it is a "deceleration" (negative sign) since the load was removed

while in Stage 1 (0 < T < 1) [Equations (D-6) and (D-25)].

*(T) - -(l)X (D-75)u
0

represents a positive acceleration.

Using Equation (D-65) in the moment resultant Equation (D-64), we obtain

M (X,T) - (2 + c u )(1)3 + c u2() +(3 - 1 (D-76)

which becomes 1 at x - u.
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Therefore, for 0 < x < u

L2+2c 2(D-77)

and

m" = -3[ +7_1 x + 2c2 (D-78)

One of the roots p, of m' o is p, u. Thus the other one, p2 1 isx

3 2 ] .gi(c26

3 2 +3 +2  (D-79)

3 3
u Lu

We can rewrite m' as
x

2

- [ + IX-Pl] x-P 2 ] (D-80)
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Since mT(X) > 0 and u,c > 0 this means that

(X-Pl)(x-P 2 ) 10 (D-81)

or x must lie within the range of the roots p1 and p2 . This means that since

0 < x < u, the second root P2 cannot be positive, because then there will be an

interval (O,p2) for which a value of x will yield (X-Pl)(x-p2) non-negative.

Thus,

2 < 0 (D-82)

L+ C
u3 u

means

u 2 6 (83)
c

At x - 0, where the supports are, m' becomes
x

M2(o) Y (D-84)

For the function not to become less than -1, m'(o) must be non-negative,
D
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i.e.,

m'(o) - - >-0 (D-85)

x i ~2

or

2 6

Since the shell is short, c2 < 6 means that

u2 < 6 >i (D-87)
C

However, at the beginning and time T I the initial value that u assumes is u0

given by Equation (D-71), i.e.,

2 6 (D-88)
0 c 2(p-l)

which cannot exceed 1, i.e.,

2= 6 <z or 6
U c 2(p-l)- -

As time goes on, we know that u increases, as per

2 2[ + 1 (D-89)

rD-18
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until at T < -- p, u becomes 1.
c2 +6

In summary, therefore, c2 < 6 and p > 1 + 6 guarantees that mx(O) > o.
C

At the other end, x - uxm'(u) - o, and it is the second derivative that dictates

that the moment resultant is less than or equal to 1, since

6 _2 /6_2(
m,-) 2 cu + c2)cj<O (D-90)

u

Returning to the velocity equation we have, noting that

u 2 (D-91)
C (p-T)

c2u2
p 22)'P (D-92)

(6+c u)

(p-i:) 2 36i: 36 p2 (D-93)
c u (6+c2u2 )2

and

6 + c2u2 6p (D-94)
p--:
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we proceed as follows

x (P-.r)(D-95)

or

dw M x(P dT (D-96)

However, by the differential equation that u satisfies Equation (D-66)

dat . 2 (P-T) (D-9 7)
2u5

or

dw =2 (-)2 du (D-98)

22j

Writing (p--r) 2in terms of u only, we get

72x 2 du (-9
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By Table D-3, however,

W72x p 2 du

0

zP 2 Lu I + 2 +6c 2 +6 L2) 8 2 )

1 'Uu
3cta -lcu\ + f(x) (D-100)
4 /6- FV6/ u.u°

or

w(x,u) -f(x) + xp [6ul 1 + c 2  j

jc 2 2 2 + )2  8(u2 +)

c(p-l) + c(-1) +

26

c 2 c p/F1  72p 2 48p

and we have replaced u2 + 6 by
Dc-
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u 2 62 (D-102)

or

w(x,u) = f(x) + xp 2 u' -1 +
2 2

6 uc c (P-1)+

c 2 8(6+c2u2) cv' 48p

or

w~~)-fx p2 3c 2u _c +p13')
w~~u fx) + p (6+c 2 u2 ) 2  T/6 P

I 23c u -/-c +
4(6+c2u2)

6 ta1E) -tan
1 V - (D-104)
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This can also be rewritten in terms of time T as

J

W(z,r) - f(z) + X TFpr)/ + +

4/6 4/5

f(x) + x [T61,(P-)3/2 - (p-1)3/21+

3c ~ -T -(-)+ p 2  ta 1 T ta1i/ (D-105)

Using the expression for w in terms of (x,T), we observe that at one end at

time T - 1 for all x < uo, the expression in brackets vanishes, while f(x)

assumes the form

f(x) - !(P-l)(u! for x <u (D-106)

By Equation (D-34)

f(x) 3 for x < u (D-107)
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To obtain the solution for u 0 < x < u we proceed as follows. At this point we

need to use the value of w of x - u, which has not been obtained. Using this

quantity [(see second interval for u < x < 1) (Equation (D-130)] we must have

w(x,-r)] -B lz2pT - T 2 1 _ ] . I p _ 2pT + T 2] (D-108)

Rewriting all T's in terms of u [Equation (D-92)].

w~~x~t) =- -2+ cu (D-109)
ux 2[ (6+c2u2 ) (6+c2u 2)2]

and using Equations (D-103), (D-108), and (D-109) we obtain Equation (D-110).

f(u) +up 2 6 cc - /6-) +
u +p 2 6 2(6+C2U2)

2  c/ T 72p 2

6 uc4 / c4(p-l) +

c2 8(6+c2u2) c4TI 48p +

-tc an II tan 1- l
8 6) ta

2 (+c2u2) + cu CD-b
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Hence,

f.u,2 c u2  c u4

f.ll (u)-- - 2p (6+c2u2)+ ' (6+c2 u2)2

up 2-uc /6- c4
P 2 2(6*c 2  

-2 cp-1 72p2

C2 )(6+C2U
2) cr i 48p

Consequently (1 < r < r')

w(xr) - (p-)(o) + 2V- (pT)3/2 - (p_1)3 /2 +

3c pT~

A6cp tan T ta(-I  
j) (D-112)

in the interval

0<x<u 0
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and

w(XT)- - 2p ( (6+x2)] +

__cp2x tan-i() u tan-i(cx) +

xp 13c2 - 3cr2 + 3cu - 3cr 2
6+c u (6+c2x2 )2  4(6+c2U2 ) ( 6+c2x2)

for u < x < u. (D-113)0 - -

This agrees with the two end values. Furthermore, w > 0 for all p > T and 0" 0

as required.

2. Second interval (u < x < 1) and 1 < T < T', where T' is defined later.

Solve

m"+ p n 0 (D-114)

2c2

with

p 0 (D-115)

m -1 (D-116)
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- -1 (D-117)

> 0 (D-118)

"< 0 (D-119)

The equilibrium equation reduces to

* - -1 (D-120)

By integrating with respect to time

V " -r + C1  (D-121)

At T- 1 , (l) -p -1 (D-122)

hence,

p -1--i + C1  (D-123)

C1 "p (D-124)

i.e.,

*(T) - p -(D-125)

for all p - > 0. (D-126)

D-27



NSWC TR 86-328

Integrating again

w(T) = pT 1 2 + C (D-127)

However, at T - 1 by Equation (D-55)

w(1) (p-l) P - + C2  (D-128)

C2- -± (D-129)
22

Hence,

w(T) - .[2pT - 2 (D-130)

STAGE 3 (T' < T < T)

We observe that when u reaches the midpoint (u " 1), the velocity w is

still not zero, i.e., for time T' when

U22 6T'(D1)-=1 (D-131)

c (p-T')

i.e.,

2
2-c - ( 6 - (D-132)

c++6 Phigh
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v(r') - (p-T')x 0 o (D-133)

the hinge has reached the center and motion continues.

Again, ye must consider the possible portion on the yield surface. Hodge

concludes that portion AB, for which

n¢ - -1 (D-134)

-1< mx < 1 (D-135)

,-n 0 (D-136)

> 0 (D-137)

is the correct location. In addition to the above we must have continuity of

velocities, accelerations, displacements, and stress resultants, at time T - T'.

The equilibrium equation to be solved then is

1|
-m + p + - 0 (D-138)

2c 2  4

with

n¢ M -1 , p " 0 ,i.e.,
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1min1 + (D-139)

However, by Equation (D-66) or Table D-3 we know that at T T

(1') - - (1u)[2

u-i

c- + (D-140)

and

w() " (p-T)(l)l -(p-r')x -

u-i

( ~ 2 6 3 4
2 *-.-,x M x -~P X I .--.6} (Dl141)

Since the velocity must be non-negative for the strain vector to satisfy the

flow rule on the yield surface and since its second derivative with respect to

the space variable x is zero, the velocity can only be linear in x. Assume

w(t) - (A1 + A2T)X (D-142)

then 4(T) - A2x (D-143)
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Frou the boundary condition

A 3 2)(D-144)

2r S -+2(-15

Hence,

*(T) S_ +A.-..~2)r] (D-145)

From the boundary condition on velocity, however,

2~ 2D17

or

3

A 1  = : p(D-148)

Hence,

*(T) A, - T 2 (D-149)

This equation is valid for all times for which ,(r) > o, i.e.,

9-31
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c2 (2+2) (D-150)

i.e., for times T in excess of T ' - but less than or equal to T
c +6

2
T < p (D-151)

- c +2

T represents the time for which velocity if(T) vanishes and motion stops.

Before we integrate the velocity to obtain the displacement distribution we

use, integrate the equation of equilibrium

2x2

1 2 c + CD-152)

2c2  c

At x = 1, m' - o, i.e.,
x

12

21 M; x I I (D-153)

4c2
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*-X-4. c2y ++2x (D-156)

2c 2  4c

a' 2c 2 - 3(c2+2) + 6 - c 2

- 3( + 2 + 2c2x + (3- (D-157)

a =-( + x3 + C x+ (3- S _x + c2  (D-158)

At zm,

m (xml) - 1 (D-159)

giving C2 - -1. Therefore,

c 2 x 3 + c2x 2 + - S _ x (D-160)

We also note that mx(o) - -1, as It should.

Furthermore, as Equation (B-88) indicates, the yield criterion is not

violated. [See Appendix B, Equation (B-81), short shells, low loading.]

Integrating the velocity *(T) and applying the boundary conditions that,

in the two regimes (and for T' < T < To0

(a) 0 < x < u, and

D-3;
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(b) u0 < x <1

displacements at T T' must match, we have

+ ,2) E(X) 3 2 (C2+10)c 2  (D-161)

W()=c,_ (c2+T62] + El (x ) (S11

In the interval 0 < x < u

2

c 2 p (D-162)
c +6

we have

1 3/2w(x,T') (plX + x 'j (p-T' -

(p-i)312 I + p- , '(-T' - +6
4Ag

-8 cp 2 Ita n - tan - (D1)

Observe that at that time

-_/ C 2 (D-164)
p-T' 6
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312 2
T ,.,p--..) -(,2 +6 )2 p 2(D-165)

',(p- ')3 /2 . 66-' p2 (D-166)(c2+6)2

Therefore, for 0 < x < u0

I 22

1(,' x [ ,~l 3c2  2 c P13/21+
w~x,'c') - ..p-)-. +  1(2+6 )2 p (-12/6+

3cp2  _ 3c P 1 +

4 (c2+6) 4/6~

A cp tan - tan- (D-167)

Using Equations (D-167) and (D-161) to determine E1 (z), we have:

3 2 (C2+10) 2 +

-p (C2+6) 2  uE(x) = .(p-1)-- +

2o

33 2pc 3c

3c22 _ -c (p-1) 3 /2 + (c2  _ P +
S 2+6) 2,/6 4(c2+6) 4/6

V6- 2 _a-( -_iT t ] r- (D-1.68)8 cp 6) ,,.,-: I- )-

D-35
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Hence for o < x < u

x 32 (c2 +1o)

El(X) u 02(p-l)u" 4 p (c 2 +6) 2  +

3c 223/ 2

3c p2 c 3c p 3c[C ( 2+ 6) 2 2/- C2+6)446

/.2 (D-169)

For u < x < u and T =T'0

W(X,T') - 2 p - 2 + p x
2 6+c2x2) (6+c212) -

A ____ cp (2 t/2\f 3
__8__ 6 - t'~ / \( c)

l62-l/cu\- (2) (D-170)p x tn(7)tn '
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When u' 1

4(X Tp) t 1 (2) - 8 -ic x

2 [ cu ____ c2u' 3)x

A 22 4

-~cpz xItan~- tan 17+

Fp2 3 2 ut.c2 x c2 l32 (D1 )
X~(6+~u,)2  (6+c2x2 )2 4(6+c 2u,2 )2 46cx2

For u 0c < xc < ud D12

W(XT 2p cx + D c x
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or

w(x,r') - [- 2p (6+c2x2) + " (6+212)2] +

2 3c2  3c2x 3c2  3c2x

(6+-2)2 (6+c2x2 )2  4(6+c 2  4(6+c'x2)

For u < x < 1

3 2 (C2+o)C2
xp'~ (c2+6)2  + El(X) =

2 3c2  3c2x 3c2 3c12x +(D-174)
(6+c2 )2  (6+c2x2 ) + (6+c2 )2J
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Hence, in the interval uo < x < 1

3 2 (c 2+1o)c 
2

EI(x) (c2+6)2

2 2 44

2 3(6+c2x2)+

1 P cpX Itan1l(S) ta

21 3c2  3c2x 3c2  3c2x

-(++2)1 (6+c2x2 )2  + - 4(6+c2x) }  (D-1)

We can calculate the displacement at restr (T T ) by replacing T by To . We

obtain

w(T0) " 2 x + EI(x (D-176)

D-90
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w

0 < 7- <1

(p 7- 1) C P 1
0 T

2 6

U0

x==0 XUX

RING

S1 < 'r'= 'p

p-.

6 = 6

(p-i)1 (p-). FpiN/1 C2 (p _)
u(T) u 0

x '0 1 u2 =u2( )
RING u

FOR TIMES r1, u > uo ENDSLOPE u -DECREASES FROM ( T7• U 0

AS TIME PROGRESSES AND REACHES T = 7.' u -+ 1
MIDDLE

x

x=0 uo  x=1

RING

(C2~. \pT' T TrC2= 2 6

-2 +6/CL2/ 0 c2 (p-i

FIGURE D-1. VELOCITY PROFILES FOR TIME r SHORT SHELLS, HIGH LOADING
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TABLE D-1. SUMMARY, SHORT SHELLS, HIGH LOADING, 1

SHELL TYPE PRESSURE LOADING TYPE
TYESHORT (2 <6) HIGH LOAnD p > I +

CONDITIONS u C2 (-1) 0 T 1 0 x <

MOMENT m Ix, T) 2 +1 OR -RESULTANT Lxo u.=-g-

MEMBRANE n,=
RESULTANT

DISPLACEMENT w(xr) (p-) 2

2 u

VELOCITY l = (p -11 rx
u
o

ACCELERATION = (P- 1) x
uo

TIME T N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST

D-41
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TABLE D-2. SUMMARY, SHORT SHELLS, HIGH LOADING, 2

SHELLTYPEPRESSURE LOADING TYPE
TYPE

2 6 o < <
CONDITIONS U 0  C2 u0 <x < i

MOMENT
RESULTANT =1

MEMBRANE 
n

RESULTANT

DISPLACEMENT W = - 7

VELOCITY iw (p -1) '

ACCELERATION w p-1

TIME r0N/A

DISPLACEMENT HSNTCM ORS E
AT REST

D-42



NSWC TR 88328

LU

0 C

w

c-i

- N

w
CA

w+

0 +

z

D-4



NSWC TR 86-328

TABLE D-4. SUMMARY, SHORT SHELLS, HIGH LOADING, 3

SHELL TYPE PRESSURE LOADING TYPE
SHORT 2 <6 HIGH LOAD > 1 6p >r

CONDITIONS u= 6r 0 < x < u 7= p p

C2 (p -T) 1 + ,

RESULTANT mx(x,') = - 2+u u  u 23+C u2

MEMBRANE = -1
RESULTANT

2 
6

0 C2 (p1)

w(x,,r) = 1-2p C2 x2 +p + C tan -  tan - 1

(62]6)IC2x2) (6 +C2x 22]8 X)ij

+xp 2  3C 2 u 3 C2 x + 3 C2 u 3 C2xlFORu
6(6+C2u2)2 (6+C 2 x2 )2  4(6 +C2 u2 ) ,(6 + C 2 x 2)]

C (p-T)
3/2

VELOCITY i) = (p - _ x

ACCELERATION T) - x + (P-7)6] = [1 ( 2+7J

TIME AT TIME T' = P TRAVELING HINGE u MOVES TO MIDLENGTH x = u = 1

DISPLACEMENTDIAET HAS NOT COME TO REST YET
AT REST

D-44
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TABLE D45. SUMMARY; SHORT SHELLS, HIGH LOADING, 4

SHELL TYPE PRESSURE LOADING TYPF

TYPE6 TYESHORT C2 < 6 HIGH LOAD p > 1+ 6

c2

u <x <1

CONDITIONS u = > r p
1 < r'

MOMENT MX = -1

RESULTANT

MEMBRANE n=
RESULTANT

DISPLACEMENT W(T) =1[ 2p- 2--

VELOCITY w() -r

ACCELERATION = -1

TIME AT TIME 7' =- TRAVELING HINGE u MOVES TO MIDLENGTH x = u = 1 AND

TIM o P1

THIS REGIME SHRINKS TO ZERO

DISPLACEMENT
AT REST HAS NOT COME TO REST YET
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TABLE D-6. SUMMARY, SHORT SHELLS, HIGH LOADING, 5

SHELL TYPE PRESSURE LOADING TYPE

TYPE
C N< 6 HIGH LOAD p> 1 +

C
2

C O N D IT IO N S p r 7- < r < 7o  0 ' = C 2 p

C2 +6

C 2 +3Cx
2  FC2"

MOMENT m x  +JI + C+C1 + 3 x -1
RESULTANT 2 J. 2

MEMBRANE

RESULTANT 
n =-1

W(.) -! X PT 2 +c2  T 21 + El X
w(r) 1 (C2 +2

DISPLACEMENT WHERE FOR 0 <x < uo El IS GIVEN IN TABLE D-7

uo<x < 1 El IS GIVEN IN TABLE D-8

VELOCITY _ +2)
C
2

ACCELERATION =x +
2 f C 2 -

TIME T [C 2 "p

DISPLACEMENT w (ro ) 3( C2 p2x +E 1 (x) WHERE E1 WILL BE CALCULATED EITHER

AT REST 4 C2 + 2) BY TABLE D-7 OR TABLE D-8
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TABLE D-7. E 1IW FOR 0 < x <u

E1 (x) _L(p-1) 1. -x P2C242 + 3C2  P2 C 3/ +
2 u0  (C2 + ) 2  C26 F

3C2__ - 3C P,/p--j + V'6 C p2 )tan1( tan1(vfT)- ]

4(C2 +6) 4-,/- A

D- 47
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TABLE D-8. E (x) FOR uo < x < 1

+ElCp2x tan- () -tan - 
(p Ix

2  C0

4 2+66)C) 2 (6 + C 2 x2) 2

+ 3C 2  _ 3C 2 x
4(6+ C2) 4(6+ C2x
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APPENDIX R

CASE D -LONG SHELLS, HIGH LOADING
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LONG SHELLS, HIGH LOADING, (c2 > 6 , p > I + 6-N

This case is summarized in Tables E-1 through E-7.

Let us examine first the time interval 0 < T < 1. Table E-1 (it applies for

0 < x < u ) and Table E-2 (it applies for u 0 < x < 1) summarize the results.

The pertinent intervals on the yield surface lie along AB and at point B

(corner), respectively. The analysis for "short shells under high loading,"

therefore, applies for times 0 < T < 1. Equations (D-36) and (D-37) will be

satisfied and hence there will be no violation of the yield locus. Furthermore,

the velocity distribution from Equations (D-29) and (D-20) is such that the flow

rule is satisfied. Therefore,

(X,T) - (P-I)T X for 0 < x < u (E-l)

wXT) - (p-l)T for u < x < 1 (E-2)

At time T - 1 the load is removed. We observe that the analysis of the previous
2

section for the next time interval (T > 1) is only valid for c < 6. For long
2

shells, however, c > 6.

E-2
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Hence a new assumption is required as to the ranges on the yield surface.

This must be done in association with the fact that in the interval o < T < 1 the

velocity profile is given on Figure E-1 (this figure comes from Figure D-1 appli-

cable to short shells and high loads). Figure E-1 suggests that for 1 < T < T

the logical compatible velocity profile is given by Figure E-2 in such a way that

1. at time T M 1, y = 0

2. at time T - 1, u - u and the range AD has disappeared.

Based on the previous assumptions we must solve the equilibrium equation in

three intervals for 1 < T < T0, and account for initial and boundary conditions.

1. For times I < T < T1

a. For 0 < x < y (Range AD, Figure A-3, Table A-l)

0 0 (E-3)

w" > 0 (E-4)

m = -(E-5)

12  +n + p - 0 (E-6)
2c2  *

p 0 (E-7)

E-3
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b. For y < x< u (Range AB, Figure A-3, Table A-i)

n, l (E-8)

w> 0 (E-9)

= 0 (E-10)

I.m + n + p- 0 (E-11)
2c

p = (E-12)

c. For u < x < 1 (Point B, Figure A-3, Table A-i)

n, = -1 (E-13)

m 1 (E-14)

fv > 0 (E-15)

V, < 0 (E-16)

1m+ n + p-W 0 (E-17)
2c2

p =0 (E-18)

E-4
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We know that at time T - 1, when the pressure load ceases to act (see

Tables D-5 add D-6), the initial conditions are

1. For 0<x<u 2 6
- c (p-l)

w(x,l) - (P-i)x (E-la)
u

0

w(xl) - 1 (p-l) x  (E-18b)
2u 0

2. For u < x < 1
0 -

*(x,l) - p-i (E-19a)

1
w(x,l) - i (p-i) (E-19b)

We now examine the time interval T > 1. The space interval is subdivided in

three segments

1. O< x< y,

2. y < x < u, and

3. u<x<l

Both y and u will be defined later.

E-5
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FIRST INTERVAL 0 < x < y

The equilibrium equation yields

n, (E-20)

Since 4 0 (E-21)

for all times T > 1, however, this means that

=0 (E-22)

and, hence,

n, = 0 (E-23)

and integrating Equation (E-21) once with time

w f Cl(X) (E-24)

Hence,

w =  (p-l) (E-25)
w 2  u0

In summary, for 0 < x < y

m -1 (E-26)

E-6
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0o (B-27)

* 0 (E-28)

f -0 (E-29)

W m (p-i)z (E-30)
2 u

and y has not been determined.

SECOND INTERVAL y < x < u

The equilibrium equation yields

-" 1+ (E-31)
2c2x

Since by Equation (E-10) it" -0, the velocity profile must be linear in ~

Assume

it i(r)x + i(r) (E-32)

Hence,

x (r)x + i(r) (E-33)

E-7
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Hence,

m" 1 + A(T)x + B(T) (E-34)

2c 2 x

Integrating once with respect to x

1.! m, X(Ct)I  --- x + (B(T)+I)x + D(T) (E-35)
2c2

and once more

I- ()3 1 (+() 2 +D +Z
21 1 3 1 + 2 + D(T)X + E(T) (E-36)

At x y the moment resultant and shearing forces must agree, i.e.,

1c2 m,(y,T ) - AT)y2 + (1+B(T))y + D(T) - 0 (E-37)
2c2

1c- 2 T -A()y 3 + lf(l+Bi(T))y 2 + D(T)y + E(T - 1 (E-38)
2c 2c 2

Also at x - u

i 'u, (u2 + (+ )U + D(t) - 0 (E-39)
2c 2

E-8
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-M (u,T) .xA(T)U + j.(l+B(T))u + D(T)U + E(T) 2 (E-40)
2c 2c

Solving Equation (E-37) for 2c 2D, we get

2c2D - -c 2Ky2 - 2c2(i+E)y (E-41)

Solving Equation (E-38) for 2c 2E and replacing 2c 2D from Equation (E-41), we

obtain

2 22 2v

2c2E -1 +2c Ay + c2(l+B)y (E-42)

Replacing 2c2D in Equation (E-39) from Equation (E-41) we obtain

C 2x(u2_y2) + 2c2 (l+B)(u-y) = 0 (E-43)

Replacing 2c 2D and 2c 2E in Equation (E-40) from Equations (E-41) and (E-42),

we obtain a second relation

cA u -3uy +2y + c2(l+B)(u-y) 2 . 2 (E-44)

or

I 2A(u-y)( u2+yu-2y 2 ) + c2(l+B)(u-y)2 = 2 (E-45)

E-9
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Substituting c 2 (1+)(u-y) from Equation (E-43) in Equation (E-45) we finally

obtain the value of A, i.e.,

32 (E-46)
c 2(u-y)

Hence (for u 0 y)

2(l+E) - -X~u+y)

which, in view of Equation (E-46), becomes

2(1+9)- (yx/12 1

or

1i 6 2 uy (E-47)

c (u-y)

Therefore,

A 12 1 (E-48)
c 2(u-y)3

1-4i 6 2(u+y) 3(E-49)
c (u-y)

E-10
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6 ( U Yj)(E-50)

c (u-y)

2c2 D =-12uy 3(E-51)

22E (Y+U)(y'-4yu+u2) (E-52)

Also by Equation (E-41)

2cD 12uy (E-53)

By Equation (E-42)

2cE - 2y 2[3u-Y]. (E-54)

m (X,T) - i 3 -4x 3+6(u+y)x 2_2uyx-(y+u) (Y2 -4yu+u2) (E-55)

M 3XT)= 1 [-12X +l2(u+y)x-12u] (E-56)
X (u-y) 3Y

and

M"(X,T) - 12 [2 (uy (E-57)
x (U-Y)3

E-1 1
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We observe, that, in fact

mx(y,T) + -1

ml(y,T) - 0
mxu,

m1 (u,T) + 1

m'(uu) -y 0

M"(u,T) - - 12
x (u-y)2

Before we can combine all three ranges, we examine the third interval (u < x < 1).

THIRD INTERVAL (u < x < 1)

The equilibrium equation yields

- -1 (E-58)

Integrating once we get

4(T) - - + C1  (E-59)

E-12



NSWC TR 86-32C

However, by the initial condition in velocity [see Equation (E-18)] at T = 1,

we have

[-T + C1] p - (E-60)
T-1

Hence,

CI = p (E-61)

and r(x,T) p - T (E-62)

Integrating again

121
w(x,T) - pT _ 2+ Vl (E-63)

By Equation (E-19) at T = 1

1
D (E-64)

Leaving Equation (E-63) with the known constant D1 we observe that the displace-

ment must agree with that one obtained from the second interval for all times

T > 1. We must also retrieve the value of the displacement at time T = 1 as

given by Equation (E-19), i.e.,

w(x,l) 1(P-1) (E-65)

E-13
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and, therefore, D 1 takes on the value already given by Equation (E-64) and

w(z,r) - -TI - 12(E-66)

It can easily be seen that for the time range of interest, v(x,r) is

non-negative.

W~e proceed to match solutions in the three intervals for T > 1, since

1. < x< y 0in (E-67)

2. y < x<u i- ()+iT (E-68)

3. u < xl< in-p -T (E-69)

For x My i(T)y+ A(T) - 0 (E-70)

For x Mu i(T)u + (T) - p C E-il)

Therefore,

i(T) -4(T~y(E-72)

i(T)(u-y) -p T (E-73)

i( T ) ) (E-74)

E-14
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Diff=erntiate Equation (E-74) with time

1(T) 1 (p-T) d (E-75)Tu-7 (u-y)2 a,(u-y) (-5

By Equation (E-48) however and setting 0 u-y

12 1 i.e., (E-76)c2 (- 3'c (u-y)

we get

1 (p-T)d 121 (E-77)

or

e . 1 12 1 (E-78)

-2(uLY)2] -. 1{- [L2 (u-Y)2] (E-79)

d1 _[ 121 2 1 1 (E-80)

~(U-y) - (T)[O7 L 2-FT

d_(-)- 1 [12 1 - UY(E-81)

E-15
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- (p-r)9 0 0 92 - 2 (E-82)
C

22 ) T)] (E-83)

(2 U _ 1 d() (E-84)
12 2) (P T 2 ( 2 12)

Set = 62

1 d¢ dT (E-85)

612 p 2

-L og -2 l ogeP + log D (E-86)

WheU , * 2 (UY)2  U 2= 6(E-87)o c2 P1

2Io 6 12 l ogeP1 + log D (E-88)

log D - log~~1 - !l1oge~(~)-2

log~1 16 (3isj 2 )1 (E-89)
el°ge-16 I tog' f

E-16
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°g log- loge -p (E-91)

I c

6 (3-2p

or

-) 2 6 2 (21) J( 9

Taking the positive root only since u > y we obtain

F3 2

F(t) " u-y = 2- )"L(2p- (E-94)

p- ) 2 23)]

E-17
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Equation (E-50) gives

c (u-y)

Also Equation (E-71) relates i(T) to t(T)

A(T)u + B(T) = p - T (E-95)

Differentiating (E-71) with respect to time T we obtain

A(A)u + du + E (E-96)

By Equation (E-74)

kT) = ( (E-96a)

By Equation (E-48)

2 (E-96b)
c (u-y)3

Replace X(T) from Equation (E-48), i(r) from Equation (E-74), and B from

Equation (E-50) in the differential Equation (E-74)

12 u du 6 (u+y)(E-97)
2 3 +(u-y) d -2 -3
c (u-y) c (u-y)

E-18
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or

()1du _6 1*(E-98)"c (u-y)2

or

du 2f dT

(p-) [2 - (2p-3) )22

3 J

c(p-T) Z~ 2-(2p-3) (-)212

and by Equation (E-93)

du - 6 dT (E-99)-- T 
(E-99)

By Equation (E-93) e is given in terms of T

0 - 2 - (p-3(p-)22
c (P-1) 3 ]

de (2p-3) C)(p-T) 1 \((2p-3)\ (p-T)1
-)

3 F 1 C2/p L_(p) (E00

(-)[2 -(2p-3)(P-T) 2J2/0

E-19
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do t=. (p-(-11

and since

dO (2p 3 ) 6 dT (E-102)

(P-I3 2

poe (P-) 3 C (E-103)d p-t (2p-3) 6

and

6 i Ode 3 2 1 (p-i)3

du 6 1 1pr) S- 2 ( 3 do (E-104)
c 2(pTp T7 ;-Ot) L

and solving Equation (E-94) for (p-T) 2 and replacing it in Equation (E-104),

we get

(pT)2 -1) -[2- c021 (E-105)

1 2 (2p-3) 1 (E-106)

(p-T)2 (p-i)3 [2 2 2

du (2p-3) 1 d1 3 do 6 do
2u22 22 12i L 2 (E-107)

(P-1) 2 -- o 2 22 2

6 6 c

E-20
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d6 2 do 6dc1o
Lu~(~2 ( 2) v,-3(! j+0 + 2v,

/3 1 ) do (E-107a)2c l-3 2/2i

ua /0 -  log + (E-107d)

TC /- 1

Integrating once with respect to 9 we get

u = 6/[T (u C + loge  =

at T +Cu lg (E-108c)

(1(00 2/)J
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However, at T = 1, e u - and u = u (since y = o and 0 u-y)

O C (E-109)u° - -log e  2/3u0

Hence,

+ 2/3/-)
u =u + 43log e  -J ( c (E-110)

and

/ e + u°  2-

y u - u -0 + -log e  0 C (E-111)

When u 1, T = T, and = 1 and hence

u-u I U = ---log (E-112)

or

2c (1u) (e+ ) tu -El

E-22
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and by Equation (E-100)

26 (2p -3)3 (- 1 2] (E-114)
1 C (p-i) 3 11

( (u + 2/3A e-(luo) (0 + ei+3)1
eO - I AI - (E-115)

Al so

2 c ( 1 u) ( 0 + 2/) (u o / -
e V C 0 C - (E-116)

( - 4) ( o +2/)

for e >2-, u >

C 0

-[ e o = e - (E-17)

1 - -j 3

2- e /3- (E-lIB)

o 7-23
E-2 3
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2c ( 1-u) I
) c:+g e

Multiply top and bottom with e C1 0  to obtain

8= cosh(_ o)) + .(E-120)

(2(/3 ) + (1 lu)

For the general case of any e, using Equation (E-l10) we obtain

243- [ o c ) ) ! ( ... ) (E-121)

1 [C2/3 ( c(-u) ZI s(uu)

Equation (E-120) can be written in the alternative form

C u 0 v3 ~ -o
-- [coh C (1sinh](-12

1~~ ~~ c3 [0~ct( ))]

E-24
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Solving Equation (E-100) for T1we obtain

Ti-2 - S-0c.8 (E-123)

We distinguish three cases

S22.2
1. 2 - Ce0 0 (it will tur out that p and c2 > 12) (E-124)

c2 2
2. 2-S0>0o for p > (E-125)

c2 2
3. 2- S- < forp <(E-126)
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CASE 1

We now examine case 0 2/--

c

The differential Equation (E-82) reduces to

_ (pdT)e _ 82 _ 12 0 (E-127)
dT 2c2

or

d- 0 (E-128)

dT

Since p 0 T and 0 0 0

Equation (E-98) reduces to

6 1 dT
du - 6 2 T (E-129)

when 0 is a constant, i.e.,

du 6 1 dT /3 dT (E-130)
c 22/3- C

c
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and integrating

u "fi iogejp-Ti + log C (E-131)

At time T 1, u = u , i.e.,

u - 2f3 lg-o 1 + logC (E-132)

i.e.,

u j3oge + uo

And

y-uu 0  -e+- loge -T,

c e

(E-133)

A- 23-F jf3log 
,C/. c c e 17l'c/p-i

However, at T 1, y 0. This leads to p 3 and since

p >1+ 6_2 (E-134)
2

c

2 > 12 (E-135)
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By Equation (E-74)

A(T) = (p-T) (P- ) c(P-T) (E-136)
u-y 2/3

By Equation (E-48)

12 1 12 1 C (E-137)A( )2 32 03(E 1 7
c (u-y) c 0 2/

By Equation (D-72)

t(T) &- A()y - -c( ) (E-138)

By Equation (E-50)

(u-y) 34 e p - (E-139)2 "- 2u°  + ! 3jg e p-i
c (u-y)3 4/3

Therefore,

3 2
p p > T, c > 12 (E-140)

u 0  - (E-141)

0 - L3 (E-142)
c

E-28



NSWC TR 86-328

uu o +.-c1ogell (E-143)

i M- 0 0 + !loge T, (E-144)
c el )Ip,

and adding and subtracting 0 inside the square brackets can be written as

- c 1 (E-145)

2-Y

Since

B(T) - - -- (p-T)y (E-146)

-S PT (E-147)

as above.

Also by Equation (E-68) the velocity profile in the second interval

y < x < u becomes

= A(T)x + t(T) - --Ec(p-T)(x-y) (E-148)

and the acceleration

c c 1 IK.(T)x + gi(T) =--x+ C- T -_ c(-x + y) 2 (E-149)

2/3 2e/ 2/3
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When u reaches the midpoint, let the time taken be indicated by T 1 , Then

ye will have

U -u -l 3og ('-TlI (E-150)1 0 C e5 1

(p-t1 ) e 1u) (E-151)

(P-T 1
4  [p-lie 3 (E-152)

if

p > T1(E-153)

C

p- (p-1) e /3 (E-154)

p [1- e J3 + e 3--r1 (E-155)
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If, on the other hand, p < T

-p -(p-i) e~ /3-~~ (E-156)

T, + (P-1) e (or u p(+eS (-uo)) eS~u 0  (E157)

Hence,

if p > Ti ,- p - (p-i) e /3 (E-158)

if P < Tip T, - p + (p-1) e" i-u0  (E159)

and always T11

It turns out that the conditions

P > TI>1 (E-160)

reduce to

c (i-ut,)

p> p-(p-1) e /- > (E-161)
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or

0 < e which is satisfied (E-162)

and

- (1-u 0)

e < 1 (E-163)

which cannot be satisfied for 0 < u < 1
0 -

Hence for p = VP > r1 and T > 1, the postulated profile violates the flow

3rule. While for p , p < T, and T1 > 1

(1-u )

e > 0 (E-164)

is satisfied for

0 <U < 1.

Equation (E-148) for the velocity profile and Equation (E-9) (w > o) imply

that the inequality is violated and, therefore, a different velocity profile

must be assumed for this case. This particular case will not be further studied

here, since other considerations, such as inclusion of nonlinearities, have

priority.
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CASE 2

Corresponding to a value of 0, call it 0I (for time T -T) and

u 1 1, there exists a value of y, call it yI, such that

Yl 1-el (E-165)

i.e.,

0 < 1 - I -Yl < I (E-166)

with

1 > 01 > 0 (E-167)

By Equations (E-125) and (E-167), therefore,

3
with p >

23
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CASE 3

Corresponding to Equations (E-126) and (E-167) we must have

c< < (E-169)

for p <3

2]

Consequently, we combine cases 2 and 3, and treat them as a single case, i.e.,

for

3
p - and p > T.2

We proceed now to calculate the displacement distribution for times T such

that I < T < T and r are given by Equation (E-123). For this purpose, we

observe that at time T - 1 the displacement has an initial value, depending on

the position of the point x at which it is considered. This initial value is

given by the following table:

INITIAL CONDITION ONDISPL.ACEMENT W

0<x<y (P-1)x

0

y< x < u 1 (p-l)
0  _u

u<x< I p-l)
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Therefore

1. For 0 < x < y and T > 1, and by Equation (E-21)

W(XrT) =.'( -1 (E-170)

2. For y.Sx < uand T> 1

W(X,T) - -1 (p-i)x + fwdr (E-171)

However, by Equations (E-32), (E-74), and (E-72)

*(X,T) - (p-T)() (E-172)

and, therefore, Equation (E-171) becomes

-1)Xt + E~ 2 ( 1) 3 [ (eu0)

W(X T) "-(- .(- 0  g ( 0 ) 2a-) +

(e + ~ -)oe (e u + (uI ~1fe3o

" (e 2 / )ogel (0 2/+ (u 0 c 2.2)o e(uo (E173
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3. For uo < x < u and T > i, the expression for w(x,T) is like the one

given by Equation (E-173) except that instead ofl (P-l)x, the first term is
2 uo

I (p-).

4. For u < x < 1 and r > 1 we must proceed as follows:

At time r - r*, when x = u - u* and 0 - e(u) - e(u*) = 0* the displacements in

the third and fourth intervals must agree. This means that

w(u*,T*) " dT + C1  (E-174)

Tr-1

However, by Equation (E-62)

w(u*,T*) (p-T)dT + C1  (E-175)

and also
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W(U*,T*) = (-)+ S- ( [(u*-U)*u ) +.(e* 2 _u 2 )-

2 u 6~i T -p- T 0 ,-o 2

-~(*..)1o ( 0 +

j 13- )o f u+ 3e*--logeI(e*~ -')I +

2/3 l .)ogI ( -)0  2- 21 + C(E-176)

Equation (E-176) determines C 1in terms of 6*, u*, and T*.

Therefore,

W(X,T) = '(p-1) + p(T-T*) - i(T -T.*)+
2 2

c )3 u- .)e*_uo) + .1(9*2_.u2)-

lo (6u 0e -( c /3

+ 3*- )iog8 (o + 2/ - 2c* c .1ii~ (* ')

- %3lgla j ' (E-177)
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The previous analysis is valid until the first hinge circle, located by u

(see Figure E-2) reaches the midpoint, i.e., until u(TI) 1. Let the corre-

sponding time be denoted by T1 and the corresponding values of y, 0, and u be

denoted by yI, 0l, and uI (-l), respectively, i.e.,

- y(T1 ) (E-178)

u- M u(T ) - i (E-179)

01 M 6(T1 ) (E-180)

and e will be given by Equation (E-113), (E-120), or (E-122), while T1 will be

obtained by Equation (E-114) or (E-123). Equation (E-ll) defines y,. At that

instant in time, the velocity profile is given by Figure E-3. A different

assumption must be made for the motion to continue. This must be so, since

y(T), where the other hinge is located, varies with time and has not reached tL-

midpoint yet. We must also satisfy all geometrical inequalities, such as y > 0

and 0 < e < 1 for the solution to be valid.
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2 . < < 0

The analysis of long shells under low loading (Appendix C) applies in this

case. We observe that the initial conditions are different then the ones in

Appendix C. Both velocity and displacement profiles must agree for times T - Tit

which represent our starting time for this interval.

We consider two intervals.

a. For 0 < x < y (along AD on the yield surface)

we must have

0 (E-181)

V" - 0 (E-182)

m = -1 (E-183)x

p - 0 (E-184)

and by Equation (E-3)

*(x,T 1) 0 (E-185)
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and by Equation (E-25)

W(x' r1) =1 (p-i)1  (E-186)

Aklso the equilibrium equation is

- MI +nU + p 0 (E-187)
2c 2 x

Theref ore,

o0 (E-188)

o (B-189)

and, hence. lisplacement is independent of time T, but dependent on location

x, i.e.,

W(X,T) - C(x) (E-190)

This constant is the value of the displacement from the previous time range, i.e.,

0

E-40
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Thus,

w(x,T) " 1 ( 0 x (E-192)U
0

b. For y < x < 1 (along AB on yield surface)

we must have

> 0 (E-193)

w" 0 (E-194)

n, = -1 (E-195)

-1 < mx < 1 (E-196)

p M 0  (E-197)

with initial condition

w(Xr 1 )" (P- l)_Y (T1)- (E-198)

We must satisfy the equilibrium equation

1 I + n + p -i 0 (E-199)
2c2

E-41
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and assuming a distribution of velocity of the form

*(x,T) A Ax + t (E-200)

*(x,T) Ax + t (E-201)

and, hence, replacing * in Equation (E-199) we get

12  i = Ax + A (E-202)

2c2

As before, integrating we obtain

m' 2c x + 2c 2 x2 + tx+ C1  (E-203)x 2
m " c2x2 + c2 3x3 + x2] + C x + C2  (E-204)

We must satisfy the following boundary conditions

mx (y,T) - -1 (E-205)

m;(Y,)- 0 (E-206)

m (1,T) - 1 (E-207)

m;(l,T) - 0 (E-208)
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Therefore,

c2[1k y3 + (1+)y2] + c ly + C2  -1 (E-209)

c2[k y2 + 2(l+i)y] + C1 = 0 (E-210)

2c + 2(1+t)] + C, M 0 (E-211)

c 2[l.. + (14)] + c1 + c2  1 (E-212)

After similar operations, we obtain

S--2(1+B) -- 2(1+ ) 1 (E-213)

and for y y 1

1I-B -2 (1+y)A (E-214)
2

and

A _ 12 1 (E-215)
c2 (- 3
c (1-y)

6 ' - y (E-216)

and

C - 12 (E-217)

(l-y) 3 y
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c - 2(1-3y) (E-218)
2 (l-y)3

The bending moment distribution, Equation (E-204), becomes

m i + 1 3' [-4x3 + 6(l+y)x 2 - 12y x - 2(1-3y)] (E-219)

(l-y)

When x * y (for T > T ) the velocity vanishes, i.e.,

*(y,T) = 0 (E-220)

or

A(T)y + B( ) = 0 (E-221)

However, y is a function of time T. Similar differentiations, as with

Equation (C-36) gives

Ay + Ak + t 0 (E-222)

or

16 -1 (E-223)
c y(l-y)2

and the differential equation

-0 (E-224)
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or y 0 (E-225)

since y0

Therefore, y(T) is a linear function of time T and such that at time r T

it equals y1 (Y(T1 ))

y(T) - E1 (T-T 1 ) + E2  (E-226)

E ' Y(Tl) l Y, (E-227)

,(T) -E (E-228)

Comparing the x coefficient of Equation (E-198), which in fact is A, with Equation

(E-223), for times T - Tl, we have

6 2C2 (lL i)21 (P-i)(

2 -y) (-Yl) 
c 1- I

or

1i 2 [62 I(Y -2] ) (E-230)

But

El k Y 'i (E-231)
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We also observe that the velocity of the hinge circle is given by

,(T) _ i. E. 21 p-1 (E-232)

Also at time T T1 the velocities for all y < x < 1 must agree, i.e.,

w(-r T1 + ~(T 1 (P- T1 (1y) (E-233)

i.e.,

T (P- (E-234)

=( l) - (P-T1 )l (E-235)

and, therefore,

Y(T)2 2" (- + Y (E-236)

and the velocity distribution becomes

if- i(T)X + t(T) - A(T)(x-y)

(p-1) ) - 6 (r-y2 1
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Except the case when either x - y or p - the velocity becomes zero when

+ y6

Thus

+ (1-y ) c2(1- )26(

-(-y) 2  ci2 (1-y) 2 _6](P- 1)(X-Y)

The acceleration is given by

(P-T ) [ 6 d~ d (nr.L
S62  (12 a2] (l-y) 2

+ L 12 c2(xy) I (i) ] (E-239)
2 3

For consistency * > 0. Since 1 > yl, 1 > y, and x > y, we must also have

P > T (E-240)

6 1

2 > 0 (E-241)
c (l-y)

and i 1 > 0 (E-242)
c2 (1-Yl)

2

i.e., y < 1 -/ (E-243)

<1 -- (E-244)
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At

y _ - (E-245)c

the velocity becomes zero. The time taken, indicated by To, is given by

To M T l -1 +j6-1 i) 1 (E-246)

62 l 1-l\ [l-y1 (+ 1 2~l 2f6+(-t)l-

Table E-6 summarizes the results for the interval T 1 < T and points lying

in 0 < x < y.

The objective here is to obtain the displacement distribution in the interval

y < x < 1 for times T > T To do this we observe that at x = y the displace-

ments must be equal. Therefore

T

w(y,-r) - (-y(l) + dT (E-247)

.r-T

Using Equation (E-237) written in a different format

f d [c(1-Y 1 ) 2 -61  11-y] 2
T 

T 
-
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we get

A, - X-Y I + - c2(ly1)2 ] r, (E-249)

B -2 .2 (E-250)

c _YJ)1 ( P-T)

-Y 6 1 (1Y)(E-251)
C1  c 1 2 (1-yfl 2  -(p- 1 )

D -(E-252)1 [c2 (1-Y1) 2 -6]

where C1 - A1 W 1 - x (E-253)

Finally, Equation (E-247) assumes the form

w(y,-r) -=1 (p-i~T) + D,[c 2lT- 1 1 2 T2) +

6 1L. og + -x S!(C 1 B T) C (E-254)

and the displacement at which the velocity vanishes is given by

(o T), where yo 1 I

and To is given by Equation (E-246).

Table E-7 summarizes these results.
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(p-1)T

(p-i) T

Uo

x =0 Uo
RING x=1

RANGE AS POINT 8 ON YIELD SURFACE
ON YIELD SURFACE

FIGURE E-1. VELOCITY PROFILE FOR LONG SHELLS AND
HIGH PRESSURES FOR IN 0" r < 1
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POINT B
ON YIELD

wSURFACE

AB
AD RANGE

RANGE ON YIELD
ON YIELD SURFACE
SURFACE

- x
x=Oy

RING

FIGURE E-2. ASSUMED VELOCITY PROFILE FOR LONG SHELLS
AND HIGH LOADS FOR 1 < " < T,
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W AB RANGE ON
YIELD SURFACE

AD RANGE ON
YIELD SURFACE

LI

x=O y x=l x

RING MIDDLE

FIGURE E-3. VELOCITY PROFILE FOR LONG SHELLSAND

HIGH PRESSURES 3 -) FOR I< r < r
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TABLE E-1. SUMMARY, LONG SHELLS, HIGH LOADING, 1

TYPEYP BPRSUE ODNGTP

CONDITIONS u (~)0x<u

m.(x,r) =,2(- -1~)3 + I or
MOMENT U0

RESULTANT 3 x

-2---)-\ JO U\ POINTS ALONG
__________ U0 AB ON

TRESCA
SQUARE

MEMBRANE n -
RESULTANT

DISPLACEMENT W(,) = I-1 -2

2 u

VELOCITY W= p-)

ACCELERATION iw= -px

TIME TON/A

DISPLACEMENT HAS NOT COME TO REST YET
Ar REST
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TABLE E-2. SUMMARY, LONG SHELLS, HIGH LOADING, 2

SHELL TYPE PRESSURE LOADING TYPE
TYPE6 TYELONG C2 > 6 HIGH LOAD p > 1 + 6-

c
2

u=_ 60 1

CONDITIONS 
U 0

2  6
o C2(p-1) u0< x <

MOMENT MX= 1
RESULTANT

POINT B
______________ ~ON _ _ _ _ _ _ _ _ _

TRESCA
SQUARE

MEMBRANE
RESULTANT

DISPLACEMENT w = - (p-l) T2
2

VELOCITY w = (p-1) T

ACCELERATION w = P-1

TIME N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST
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TABLE E-3. SUMMARY, LONG SHELLS, HIGH LOADING, 3

SHELL TYPE AB PRESSURE LOADING TYPE

TYPE LONG C2 >6 HIGH p > 1 +_6 (3

C2  2

o< x < y 1.T.< T,

CONDITIONS ' / _ C T)3 2Uo= (p-1) Tj=P-V p- 2-c ei

e 1 defined in TABLE E-4, ATTACHMENT 1

MOMENT
RESULTANT m x = -1

MEMBRANE np = 0
RESULTANT

DISPLACEMENT w (- x2 Uo

VELOCITY w = 0

ACCELERATION W=O

TIME N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST
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TABLE E-4. SUMMARY, LONG SHELLS, HIGH LOADING, 4

SHELL TYPE AB PRESSURE LOADING TYPE
TYPE LONG C2>6 HIGH LOADp> 1 (p 3)

SEE
ATTACHMENT 1. c (C(u )I -S< x <(u 1 < To- ) + T, 3

e2= 6 [2 (2p- 3 ) 21 ) .2 _ __ C(u-uo,-67 ) (p- p T c [1 + -cothl -

CONDITIONS c2  (p- L Cu° co3h

/P 1p-)3  c 2  2~i~2'i 3
T = -1(2p -3-3) 2--6-1 01<min 1 ,if P> 2

1 2V3i 
3

MOMENT M 1 (XT) (UY)3 [-4x3+6 (u+y)x 2 -12 uyx- C < el < 1. if p <

RESULTANT (y+ u)(y2 - 4yu+ U2 )l

MEMBRANE -

RESULTANT n = -1

DISPLACEMENT SEE ATTACHMENT 2.

VELOCITY =(p-T) X -y)e

ACCELERATION 6 - +y-2 1

TIME To N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST
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TABLE E4. ATTACHMENT 1

[ c (1- \ 2u° 3 1 3) 2 -3)
\- 3 Lct .. . . . . .Cu 3- = O logoV 2\

+2V "I coth (C u u °

0_ CM3 IC

(__0 C 9 _ __
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TABLE E-4. ATTACHMENT 2

y <x x Uo

1 (P- i)
2 Uo

(p1) 3 [ 0 (e-u( lo6  3)
2 p-0 ) X-Uo(e-Uo) + - (e 2-uo2) - (E _u))oge

(((2p-3) 2 2C (uo+ 2_)]

2C '- ( log '- 0 oe O

loge 1+( c -~ °  c

1

W(X,T) - (p-l)+

C2S 1-)[-XUo)(eUo) + 1 (e 2 2  u°0u) ~ -2Vi
+ 6 ( e 2 - )L + " (0 2 2-)C- ( e -(0 ) lo g o ((p -

2 ' -)

((~) + i -og 9e +2V')J(uo V)Ig J+ Vij
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TABLE ES-5. SUMMARY, LONG SHELLS, HIGH LOADING, 5

SHELL TYPE A PRESSURE LOADING TYPE
TYELONG C2 >6 HIGH P>I+ -6 pA_

C5" 2)

CONDITIONS u x-t 1

MOMENT ex=1
RESULTANT

MEMBRANE
RESULTANT np=-1

DISPLACEMENT SEE ATTACHMENT 1.

VELOCITY w=p-T

ACCELERATION W=-1

TIME TO N/A

DISPLACEMENT HAS NOT COME TO REST YET
AT REST
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TABLE E-5. ATTACHMENT 1

u<x<l u=u*atT=T*, E=E*

W(X,T) = - (p-i) + P r-T*] - I- [ *j+
2 2

C2 (p-i)3 F 1
C2p ( -lp u*- u) (o*- uo) + 1 (e* 2-U 0 -6 (2 p- 3 ) L2 0

2C -- o, , (uo+ 2 \-)

\/{(-+ 2V ,o) I3o. + 2>)-(u+ 2\/ 3)% j(uo+ -). +

(°._ loge (E+uo loge uo-
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TABLE E-6. SUMMARY, LONG SHELLS, HIGH LOADING, 6

SHELL TYPE PRESSURE LOADING TYPE

TYPE 6 3
LONGC 2 > 6 HIGHp>I+ - po-

C2  2

[ 2VY 2 V'Y, U0o -o + 3 loge (o +  "- - 1U.o- C -I 0= 6-

YC (o 7 + UO=T

C C2 '- c
CONDITIONS Tj < 1 _ th (A) +ju01 A~ C(i -u)

C [1 + \ coth (A) V-
Cuo  J _ 1p3 [2 C2 2

0<x<y y <1 _ p6
C

MOMENT
RESULTANT x

MEMBRANE 0
RESULTANT

1 (p-i)
DISPLACEMENT w(x, ) - x

2 uo

VELOCITY =0

ACCELERATION w = 0

p- 71 (
TIME T =r + (1 __)(1 _

DISPLACEMENT
AT w(x, 70 )

REST
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TABLE E-7. SUMMARY, LONG SHELLS, HIGH LOADING, 7
SHELL TYPE PRESSURE LOADING TYPE

TYPE63
(LONG C2 -> 6 HIGH p>1 + 6 p 3

C2  2

(" 2 / - A 2 - 3 -

00 + 2'%/i uJo Cu
CON DITIONS 1 . i+ T) (Uo-- CA) )(-) 2~~2

Y, 
U O 

2C 3)-2\I.--

(0 1 (u. +
C C

[0  0 Cuo,) A =  -)

1 2/3 f 'a

CONDITIONS 
+cu = ( ( - 12 26 0

2(2 -1) 6ii2

6 V i)

y DL M - ( f1-x) + G
\ /o g + 1 C 2 (1 Y l) 2 ( P r 1

C 6 1 FO ORE

MMEBRAN mx 1+ E-4x 3 + 6 ( 1 + y ) x 2 - 12 y x - 2 (1 - 3y ) ]

RESULTANT .- y)3 no = -1

VELOCIT1 ([-1) + ) ( -) - [B, ( 1 ' 21

w~y,=)1 +

2 U O 2

D IS P L A C E M E N T (SEE-C O N TIN U A TIO N
AT RS I (SEE NEXT PAGE

62  _ 2 lo

6i B2l-y 1 FO MORE
ACELRAIO(C- 1 INFORMTION.

j 7 21(1 (x Y)3 ( 1 - ) c2( -)

TO(1 = 1"1

6 1 - Yl +

(SEEECONINUATIO

TISLEME NT -7 i

DIPAC EMET w(y o . )  when y =yo = 1 \/-the velocity becomes zero,.SECNIUTO
ARETC PAGE.)
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TABLE E-7. (Cont.)

A,= X - T1y)] PT

(1 -y1) (p--T

D1= [1 v 1 2 6

E-63/E-64



NSWC TR 86-328

DISTRIBUTION

Copies Copies

Chief of Naval Research Commander
Attn: ONT-023 2 David Taylor Naval Ship Research

Dr. A. J. Faulstich 2 and Development Center
Mr. D. Houser I Attn: Code 17 (M. Krenzke) 1

Department of the Navy Code 172 1
Arlington, VA 22217-5000 Code 175 (J. Sykes) 1

Code 175.2 1
Commander Code 175.1 (B. Whang) 1
Naval Sea Systems Command Code 175.1 (W. Gilbert) I
Attn: SEA-05B 1 Code 175.2 (W. Conley) 1

SEA-55 (P. A. Gale) 1 Code 175.2 (P. Manny) 1
SEA-55B (G. Hagedorn) 1 Code 184.4 (M. Hurwitz) 1
SEA-55Y1 (S. G. Arntson) 1 Code 1620.3 (R. Jones) 1
SEA-55Y13 (A. Kurzweil) 1 Code 1720.6 (A. E. Dadley) 1
SEA-55YB (R. A. Sielski) 1 Code 1720.4 (A. Wiggs) I
SEA-55Y2 (R. E. Provencher) I Code 1720.4 (J. R. Carlberg)l
SEA-63 (CAPT R. T. McGee) I Code 1730.5 (J. C. Adamchak)1
SEA-63R32 I Code 175.2 (P. Dudt) I
SEA-63B (C. J. Costanzo) I Bethesda, MD 20084
SEA-09B331 I
SEA-05R23 (C. Pohler) 1 David Taylor Naval Ship Research
PMS-402 1 and Development Center
PMS-406 1 Attn: Code 177 (R. Fuss) 1
PMS-407 1 Code 1770.1 (V. Bloodgood) I

Department of the Navy Code 1770.1 (M. Riley) 1
Washington, DC 20362-5101 Code 1770.2

(R. Higginbotham) 1
Office of Naval Research Underwater Explosion Research
Attn: Code 1132SM (Dr. A. Kushner)l Division

Code 1132P (D. Miller) I Portsmouth, VA 23709
800 North Quincy Street
Arlington, VA 22217 Naval Coastal Systems Center

Attn: Code 4210 (J. Rumbough) 1
Panama City, FL 32407

Commander

Naval Weapons Center

Attn: Technical Library 1
San Diego, CA 92152

(1)



NSWC TR 86-328

DISTRIBUTION (Cont.)

Copies Copies

Commanding Officer Weidlinger Associates
Naval Underwater Systems Center Weidlinger Consultants

Attn: D. J. Lepore I Attn: Dr. M. Baron I
Newport, RI 02840 Dr. M. Bowen 1

Dr. A. Misovich I

Naval Research Laboratory 333 7th Avenue

Attn: Code 6382, Material Science New York, NY 10001
and Technology Division I

Dr. Mitchell Jolles I Hibbitt, Karlson & Sorensen, Inc.
Code 5131 (Martin Marcus) I Attn: Dr. B. Karlson 1

Library 1 Dr. P. Sorensen 1
4555 Overlook Avenue 100 Medway Street
Washington, DC 20375-5000 Providence, RI 02906

Director American Bureau of Shipping
Defense Nuclear Agency Attn: Mr. Stanley G. Stiansen,
Attn: SPSS (C. McFarland) 1 Vice President 1

(P. T. Tsai) 1 Dr. Y. K. Chen 1

(C. Carlin) I Dr. D. Liu 1
Washington, DC 20305-1000 45 Eisenhower Drive

Paramus, NJ 07652

Purdue University
Attn: Prof. W. F. Chen I Stevens Institute of Technology,

School of Civil Engineering Castle Point
West Lafayette, IN 47907 Attn: Prof. David Nicholson 1

Department of Mechanical

Massachusetts Institute of Engineering

Technology Hoboken, NJ 07030

Attn: Engineering Library 2
Prof. T. Wierzbicki, Library of Congress

Department of Ocean Attn: Gift and Exchange Division 4

Engineering 1 Washington, DC 20540

Prof. T. H. Pian I
Prof. E. A. Witmer, Westinghouse Electric Corporation
Department of Aeronautics Attn: Dr. Aspi K. Dha]la I
and Astronautics I Advanced Energy Systems Division

Prof. K. J. Bathe, P. 0. Box 158
Department of Mechanical Madison, PA 15663

Engineering I
Prof. J. J. Connor, Lockheed Palo Alto Research

Department of Civil Laboratory
Engineering I Attn: Dr. David Bushnell I

Cambridge, MA 02139 Dr. John DeRuntz I

Dr. Charles Rankin 1
Defense Technical Information Dr. G. Stanley I

Center Department 52-33, Building 205
Cameron Station 3251 Hanover Street
Alexandria, VA 22304-6145 12 Palo Alto, CA 94304

(2)



NSWC TR 86-328

DISTRIBUTION (Cont.)

Copies Copies

Conoco, Inc. Society of Naval Architects and
Attn: Dr. J. G. DeOliveira I Marine Engineers
Production Engineering Attn: Library 1
Suite 2718 1 World Trade Center
P. 0. Box 2197 Suite 1369
Houston, TX 77252 New York, NY 10048

University of California Martin Marietta Baltimore Aerospace
Attn: Prof. A. E. D. Mansour 1 Attn: Library 1
Department of Naval Architecture Structural and
Berkeley, CA 94720 Mechanical Analysis

(Arthur J. Rosenwach) 1
Ballistic Research Laboratory (W. W. Webbon) 1
Attn: Dr. K. Bannister 1 103 Chesapeake Park Plaza

Dr. J. A. Zukas I Baltimore, MD 21220
Aberdeen Proving Ground, MD 21005

American Society of Civil Engineers
The George Washington University Attn: Engineering Library I
Attn: Prof. T. Toridis 1 345 East 47th Street
Department of Civil Engineering New York, NY 10017-2398
Washington, DC 20052

California Institute of Technology
The George Washington University Attn: Aeronautics Library 1

Center at NASA Library 1
Attn: Prof. A. K. Noor Tet Propulsion Laboratory
Langley Research Center Library 1
Hampton, VA 23665 Pasadena, CA 91109

Stanford University University of California
Attn: Prof. T. J. R. Hughes I Attn: Library 1
Division of Applied Mechanics Civil Engineering Library I
Stanford, CA 94305 Berkeley, CA 94720

Northwestern University University of California
Attn: Prof. T. Belytschko 1 Attn: Library
Department of Civil and Los Angeles, CA 90024

Mechanical/Nuclear Engineering
Evanston, IL 60201 Harvard University

Attn: Library
John J. McMullen Associates, Inc. Cambridge, MA 02138
Attn: Mr. Donald Wilson 1
3241 Jefferson Davis Highway National Blireau of Standards
Suite 715 Attn: Library 1

Arlington, VA 22202 Washington, DC 20390

Columbia University
Attn: Civil Engineering Library I

Library 1
New York, NY 10017

(3)



L . . .- ~ .. - *** * .. . .SI* * m* - *o* • -S

NSWC TR 86-328

DISTRIBUTION (Cont.)

Copies

Center for Naval Analyses
4401 Fort Avenue
P. 0. Box 16268
Alexandria, VA 22302-0268 1

NSACSS
Attn: G74 (TA) I
Ft. George G. Meade, MD 20755-6000

Internal Distribution:
E16 (J. Renzi) I
E231 2
E232 15
E35 I
028 (M. Marshall) 2
RIO I
RIO (D. Phillips) 2
RIO (H. Huang) I
RIOA (W. K. Reed) 2
R102 2
RJ4 2
R14 (M. Moussouros) 15

(K. Kiddy) I
(G. Harris) I
(S. Wiilkerson) I
(F. Bandak) I
(D. Bendt) I
(0. Shaker) 1
(J. Koenig) I
(T. Farley) 2
(R. M. Barash) I
(N. Holland) I
(W. McDonald) I

R32 (0. Matra) I

1112 (W. Hinckley) 1
(D. Crute) 1

'131 (C. F. McClure) 1
(S. VanDenk) I

E22 1

(4)


